1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leya [2.2K]
2 years ago
10

5.00-kg particle starts from the origin at time zero. Its velocity as a function of time is given by v =6t^2 i + 2t j where v is

in meters per second and t is in seconds. (a) Find its position as a function of time. (b) Describe its motion qualitatively. Find (c) its acceleration as a function of time, (d) the net force exerted on the particle as a function of time, (e) the net torque about the origin exerted on the particle as a function of time, (f) the angular momentum of the particle as a function of time, (g) the kinetic energy of the particle as a function of time, and (h) the power injected into the system of the particle as a function of time.
Physics
2 answers:
otez555 [7]2 years ago
8 0

The concept of derivatives and integrals allows to find the results for the questions are the motion of a particle where the speed depends on time are:

       a)the position is:  r = 2 t³ i + t² j

       b) the position of the body on the y-axis is a parabola and on the x-axis it is a cubic function

       c) The acceleration is: a = 12 t i + 2 j

       d) the force is: F = 60 t i + 10 j

       e) the torque is:  τ = 40 t³ k^

       f) tha angular momentum is:  L = 4t³ - 6 t² k^

       g) The kinetic energy is: K = 2 m t² (9t² +1)

       h) The power is:   P = 2m (36 t³ + 2t)

Kinematics studies the movement of bodies, looking for relationships between position, speed and acceleration.

a) They indicate the function of speed.

        v = 6 t² i + 2t j

Ask the function of the position.   The velocity is defined by the variation of the position with respect to time

          v = \frac{dr}{dt}  

          dr = v dt

we substitute and integrate.

        ∫ dr = ∫ (6 t² i + 2t j) dt

        r - 0 = 6 \frac{t^3 }{3} \ \hat i + 2 \frac{t^2}{2 \ \hat j }  

       r = 2 t³ i + t² j

b) The position of the body on the y axis is a parabola and on the x axis it is a cubic function.

c) Acceleration is defined as the change in velocity with time.

           a = \frac{dv}{dt}  

           a = \frac{d}{dt} \ (6t^2 i + 2t j)  

           a = 12 t i + 2 j

d) Newton's second law states that force is proportional to mass times the body's acceleration.

          F = ma

          F = m (12 t i + 2 j)

          F = 5 12 t i + 2 j

          F = 60 t i + 10 j

e) Torque is the vector product of the force and the distance to the origin.

           τ = F x r

The easiest way to write these expressions is to solve for the determinant.

         \tau = \left[\begin{array}{ccc}i&j&k\\F_x&F_y&F_z\\x&y&z\end{array}\right]  

        \tau = \left[\begin{array}{ccc}i&j&k\\60t &10&0\\2t^3 &t^2&0\end{array}\right]  

       τ = (60t t² - 2t³ 10) k

       τ = 40 t³ k ^

f) Angular momentum

        L = r x p

        L =rx (mv)

        L = m (rxv)

The easiest way to write these expressions is to solve for the determinant.

       \left[\begin{array}{ccc}i&j&k\\2t^3 &t^2&0\\6t^2&2t&0\end{array}\right]  

    L = (4t³ - 6 t²) k

 

g) The kinetic energy is

            K = ½ m v²

            K = ½ m (6 t² i + 2t j) ²

            K = m 18 t⁴ + 2t²

            K = 2 m t² (9t² +1)

h) Power is work per unit time

           P = \frac{dW}{dt}dW / dt

The relationship between work and kinetic energy

           W = ΔK

     

          P = 2m \ \frac{d}{dt} ( 9 t^4 + t^2)

          p = 2m (36 t³ + 2t)

In conclusion with the concept of derivatives and integrals we can find the results for the questions are the motion of a particle where the speed depends on time are:

       a) The position is:  r = 2 t³ i + t² j

       b) The position of the body on the y-axis is a parabola and on the x-axis it is a cubic function

       c) The acceleration is: a = 12 t i + 2 j

       d) The force is: F = 60 t i + 10 j

       e) The torque is:  τ = 40 t³ k^

       f) The angular momentum is:  L = 4t³ - 6 t² k^

       g) The kinetic energy is: K = 2 m t² (9t² +1)

       h) The power is:   P = 2m (36 t³ + 2t)

Learn more here:  brainly.com/question/11298125

N76 [4]2 years ago
7 0

Answer:A 5.00 kg particle starts from the origin at the time zero. its velocity as function of time is v=6t^2i+2tj where v in meters per second and t ...

1 answer

·

Top answer:

(a) The position as function of time is x(t)=2t3i^+t2j^.x(t)=2t^3\hat\textbf i+t^2\hat\textbf j.x(t)=2t3i^+t2j^​. (b) Describe the motion qualitatively. ...

Explanation:

You might be interested in
According to the Theory of Plate Tectonics, which of the following statements is correct?
kramer

Answer:

It's D. The geothermal energy from Earth's core loses most of its heat before reaching the outer layer. The plates on the outer layer have been proven to be moving due to evidence such as earthquakes, volcanic eruptions, and tsunamis.

Explanation:

8 0
3 years ago
As light shines from air to water, the index of refraction is 1.02 and the angle of incidence is 38.0 °. What is the light's an
muminat

Answer:

Light's angle of refraction = 37.1° (Approx.)

Explanation:

Given:

Index of refraction = 1.02

Base of refraction = 1

Angle of incidence = 38°

Find:

Light's angle of refraction

Computation:

Using Snell's law;

Sin[Angle of incidence] / Sin[Light's angle of refraction] = Index of refraction / Base of refraction

Sin38 / Light's angle of refraction = 1.02 / 1

Sin[Light's angle of refraction] = Sin 38 / 1.02

Sin[Light's angle of refraction] = [0.6156] / 1.02

Sin[Light's angle of refraction] = 0.6035

Light's angle of refraction = 37.1° (Approx.)

5 0
3 years ago
A line from the Brackett series of hydrogen has a wavelength of 1945nm (or 1.0979x10^7m). From which state did the electron orig
Zarrin [17]
We use the Rydberg Equation for this which is expressed as:

<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]

Solving for n2, we obtain n=1.
5 0
3 years ago
Why does a stop sign appear red?
dolphi86 [110]

Answer:

because it’s suppose to be red like a stop light.

Explanation:

So it tells you to stop

8 0
3 years ago
What is the purpose of using a wedge?
valentinak56 [21]
Think of a wedge as something you put in between objects, so it is a separates objects
4 0
3 years ago
Other questions:
  • Find the magnitude of the resultant force and the angle it makes with the positive x-axis. (Let |a| = 22 lb and |b| = 16 lb. Rou
    9·1 answer
  • A catcher "gives" with a baseball when catching it. If the baseball exerts a force of 437 N on the glove, so that the glove is d
    13·1 answer
  • PLEASE HELP ME!! a police car moves at a speed of 30m / s, the driver is at a single-note frequency of 650Hz It is heard. One of
    10·1 answer
  • Which carries information by changing original sounds into numbers?
    11·2 answers
  • A projectile is fired vertically upwards and reaches a height of 78.4 m. Find the velocity of projection and the time it takes t
    8·1 answer
  • What quantity resists change in motion
    6·1 answer
  • If a cat falls off a ledge, the Earth pulls the cat to the ground with the force of gravity. According to Newton's Third Law the
    7·2 answers
  • The distance a toy car travels over time is shown in the graph.
    11·1 answer
  • A carpenter lifts a 10 kg piece of wood to his shoulder 1.5 m above the ground. What is the wood's potential energy on the carpe
    11·1 answer
  • What is the audible range of human hearing
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!