Answer:
Will be doubled.
Explanation:
For a capacitor of parallel plates of area A, separated by a distance d, such that the charges in the plates are Q and -Q, the capacitance is written as:
![C = \frac{Q}{V} = e_0\frac{A}{d}](https://tex.z-dn.net/?f=C%20%3D%20%5Cfrac%7BQ%7D%7BV%7D%20%20%3D%20e_0%5Cfrac%7BA%7D%7Bd%7D)
where e₀ is a constant, the electric permittivity.
Now we can isolate V, the potential difference between the plates as:
![V = \frac{Q}{e_0} *\frac{d}{A}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7BQ%7D%7Be_0%7D%20%2A%5Cfrac%7Bd%7D%7BA%7D)
Now, notice that the separation between the plates is in the numerator.
Thus, if we double the distance we will get a new potential difference V', such that:
![V' = \frac{Q}{e_0} *\frac{2d}{A} = 2*( \frac{Q}{e_0} *\frac{d}{A}) = 2*V\\V' = 2*V](https://tex.z-dn.net/?f=V%27%20%3D%20%5Cfrac%7BQ%7D%7Be_0%7D%20%2A%5Cfrac%7B2d%7D%7BA%7D%20%3D%202%2A%28%20%5Cfrac%7BQ%7D%7Be_0%7D%20%2A%5Cfrac%7Bd%7D%7BA%7D%29%20%3D%202%2AV%5C%5CV%27%20%3D%202%2AV)
So, if we double the distance between the plates, the potential difference will also be doubled.