here we will use the momentum conservation
initial total momentum = final total momentum


now plug in all data here



so the final speed will be 7.94 m/s
Answer:
For sound waves to travel, there is a requirement of medium and density of the medium is considered to be one of the factors on which the speed of sound depends. When the medium is dense, the molecules in the medium are closely packed which means that the sound travels faster.
Explanation:
Answer:
the correct answer is A
Explanation:
In an Einstein-type analysis, the photon is absorbed, it loses all its energy, therefore the electron must receive all or none of the energy of the incident photon. In a type of inelastic shock.
Let's analyze the different answers
A) true. In photon it is completely absorbed or passes without interaction
B) False. The photon must change energy, but in this case there is no absorption of the photon
C) False. In the insistent analyzes, the quantization of the electron in discrete states is not mentioned.
Therefore the correct answer is A
Answer:
D
Explanation:
Just had the same question and couldnt find and answer so i guessed. heres the answer no lol!