Answer:
The minimum frequency required to ionize the photon is 111.31 ×
Hertz
Given:
Energy = 378 
To find:
Minimum frequency of light required to ionize magnesium = ?
Formula used:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
Solution:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
738 ×
= 6.63 ×
× v
v = 111.31 ×
Hertz
The minimum frequency required to ionize the photon is 111.31 ×
Hertz
One is when you are measuring a distance in space! I don't know the other but hope you find another example!
Answer:
2.3 newtons of force
Explanation:
Divide the weight by the speed of the bike
<span>If you are looking to get an object up the highest, shoot it straight up. If you want to go for a specific horizontal displacement, use the range equation. R = v2sin(twice the launch angle)/ g. g is the gravitaional constant, 9.8 meters per second. Use degrees for the angle. v is the launch velocity. R is the horizontal displacement. This formula only works if your start altitude and end altitude are the same, i.e. you must shoot over a level field.
it depends on the gravitational force of attraction of earth and air resistance.
if we are neglecting air resistance, the max.horizontal distance is according to this formulae,
V0/2 * sin (2theta)
where V0 is the initial velocity
theta is the angle with x axis and the projection.
There are a number of ways that you could find a horizontally displaced object. You could for example just look.</span>