The dimensions of the rectangular cross section will be<u> 10 centimeters by 18 centimeters</u>
<u></u>
Step-by-step explanation:
As ,we know
<u>The rectangular cross section is parallel to the front face</u>
Which clearly states that
The dimensions of the rectangular cross section is congruent with the dimensions of the front face
Lets assume that dimensions of the front face are 10 centimeters by 18 centimeters
<u>Then ,The dimensions of the cross section will also be 10 centimeters by 18 centimeters</u>
<u></u>
<u>Hence we can say that the</u> dimensions of the rectangular cross section will be<u> 10 centimeters by 18 centimeters</u>
Answer:
ITS A
Step-by-step explanation:
PLZ GIVE BRAINLEIST
The required equation is <u>135 + 9x > 250</u>.
The number of lawns Ed must mow is assumed to be x.
The amount Ed charges for each lawn he mows is $9.
Thus, the total amount Ed earns by mowing x lawns = $9x.
The savings which Ed has is $135.
Thus, the total amount Ed will have to spend can be written as the expression, $(135 + 9x).
The cost of the video game is given to be $250.
We are asked to write an equation, that can be used to find the number of lawns Ed mow, that is x so that the amount Ed has will be more than the amount he needs to buy the video game.
This can be shown as the equation:
Total amount Ed has > Cost of the video game,
or, 135 + 9x > 250.
Thus, the required equation is <u>135 + 9x > 250</u>.
Learn more about writing equations at
brainly.com/question/25235995
#SPJ1
Y = |x² - 3x + 1|
y = x - 1
|x² - 3x + 1| = x - 1
|x² - 3x + 1| = ±1(x - 1)
|x² - 3x + 1| = 1(x - 1) or |x² - 3x + 1| = -1(x - 1)
|x² - 3x + 1| = 1(x) - 1(1) or |x² - 3x + 1| = -1(x) + 1(1)
|x² - 3x + 1| = x - 1 or |x² - 3x + 1| = -x + 1
x² - 3x + 1 = x - 1 or x² - 3x + 1 = -x + 1
- x - x + x + x
x² - 4x + 1 = -1 or x² - 2x + 1 = 1
+ 1 + 1 - 1 - 1
x² - 4x + 1 = 0 or x² - 2x + 0 = 0
x = -(-4) ± √((-4)² - 4(1)(1)) or x = -(-2) ± √((-2)² - 4(1)(0))
2(1) 2(1)
x = 4 ± √(16 - 4) or x = 2 ± √(4 - 0)
2 2
x = 4 ± √(12) or x = 2 ± √(4)
2 2
x = 4 ± 2√(3) or x = 2 ± 2
2 2
x = 2 ± √(3) or x = 1 ± 1
x = 2 + √(3) or x = 2 - √(3) or x = 1 + 1 or x = 1 - 1
x = 2 or x = 0
y = x - 1 or y = x - 1 or y = x - 1 or y = x - 1
y = (2 + √(3)) - 1 or y = (2 - √(3)) - 1 or y = 2 - 1 or y = 0 - 1
y = 2 - 1 + √(3) or y = 2 - 1 - √(3) or y = 1 or y = -1
y = 1 + √(3) or y = 1 - √(3) (x, y) = (2, 1) or (x, y) = (0, -1)
(x, y) = (2 ± √(3), 1 ± √(3))
The solution (0, -1) can be made by one function (y = x - 1) while the solution (2 ± √(3), 1 ± √(3)) can be made by another function (y = |x² - 3x + 1|). So the solution (2, 1) can be made by both functions, making the two solutions equal.