Answer:
The maximum speed that the truck can have and still be stopped by the 100m road is the speed that it can go and be stopped at exactly 100m. Since there is no friction, this problem is similar to a projectile problem. You can think of the problem as being a ball tossed into the air except here you know the highest point and you are looking for the initial velocity needed to reach that point. Also, in this problem, because there is an incline, the value of the acceleration due to gravity is not simply g; it is the component of gravity acting parallel to the incline. Since we are working parallel to the plane, also keep in mind that the highest point is given in the problem as 100m. Solving for the initial velocity needed to have the truck stop after 100m, you should find that the maximum velocity the truck can have and be stopped by the road is 18.5 m/s.
Explanation:
Hope this helps!!!!!!!!!!!!!
Answer:
The correct answer is a Low earth orbit.
Explanation:
A low earth orbit can be understood as an earth orbit with an altitude of 1,000 miles or less. It is a satellite sustem that employs many satelites, in fact, most man-made objects that are currently in outer-space are part of this low earth orbit. (LEO).
The most famous LEO satellite system is the one from planet earth. Almost every space flight that human beings have ever done are done in LEO, and every spacial station is located in this zone.
In conclusion, A low earth orbit satellite system employs many satellites, each in an orbit at an altitude of less than 1,000 miles.
Answer:
(a) 21.36 ohms
(b) 5.62 A
Explanation:
Parameters given:
Potential difference, V = 120 V
Power, P = 674 W
(a) Power is given as:
P = V²/R
Where R is resistance
=> R = V²/P
R = 120²/674
R = 14400/674
R = 21.36 ohms
(b) Power is also given as:
P = I*V
Where I = Current (time rate of flow of Electric charge)
=> I = P/V
I = 674/120
I = 5.62 A