1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mote1985 [20]
3 years ago
8

Two piano strings produce beats. Frequencies of the strings are 1560 Hz. and 1563 Hz. Choose the correct frequency of the beats.

Physics
2 answers:
Naya [18.7K]3 years ago
4 0

Well first of all, I have to point out that the correct frequency of the beats is not on the list of choices that you provided.

When sources with different frequencies combine, two beats are created. The beat frequencies are the sum and difference of the frequencies that produce them.

If the source frequencies are 1,560 Hz and 1,563 Hz, then the beat frequencies are

3 Hz and 3,123 Hz.

The 3 Hz is perceived as a slight 'vibrato' in the piano's tone, so that it sounds warmer and not like a flat sine-wave generator.

The 3,123 Hz doesn't propagate well through the structure of the piano, and isn't noticeable to anyone except an expert listener (like a piano tuner). Only the top 6 keys [out of 88] on a standard piano keyboard have frequencies of 3,123 Hz or higher.

kakasveta [241]3 years ago
3 0

Beat frequency is given by the difference of two frequencies played together

f_{beat} = |f_1 - f_2|

given that

f_1 = 1560 Hz

f_2 = 1563 Hz

Now

f_{beat} = |1560- 1563| Hz

f_{beat} = 3 Hz

You might be interested in
When you must give something up in order to get something else, it is called...
natali 33 [55]
Opportunity cost refers to what you have to give up to buy what you want in terms of other goods or services. When economists use the word “cost,” we usually mean opportunity cost.
6 0
3 years ago
A cylindrical resistor element on a circuit board dissipates 1.2 W of power. The resistor is 2 cm long, and has a diameter of 0.
34kurt

Answer:

(a) The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) The fraction of heat dissipated from the top and bottom surfaces is 0.045.

Explanation:

(a) The amount of heat dissipated (Q), measured in joules, by the cylindrical resistor is the power multiplied by operation time (\Delta t), measured in hours. That is:

Q = \dot Q \cdot \Delta t (1)

If we know that \dot Q = 1.2\,W and \Delta t = 86400\,s, then the amount of heat dissipated by the resistor is:

Q = (1.2\,W)\cdot (86400\,s)

Q = 103680\,J

The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux (Q'), measured in watts per square meter, is the heat transfer rate divided by the area of the cylinder (A), measured in square meters:

Q' = \frac{\dot Q}{A} (2)

Q' = \frac{\dot Q}{\frac{\pi}{2}\cdot D^{2}+\pi\cdot D \cdot h } (3)

Where:

D - Diameter, measured in meters.

h - Length, measured in meters.

If we know that \dot Q = 1.2\,W, D = 4\times 10^{-3}\,m and h = 2\times 10^{-2}\,m, the heat flux of the resistor is:

Q' = \frac{1.2\,W}{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2}+\pi\cdot (4\times 10^{-3}\,m)\cdot (2\times 10^{-2}\,m) }

Q' \approx 4340.589\,\frac{W}{m^{2}}

The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) Since heat is uniformly transfered, then the fraction of heat dissipated from the top and bottom surfaces (r), no unit, is the ratio of the top and bottom surfaces to total surface:

r = \frac{\frac{\pi}{2}\cdot D^{2}}{A} (3)

If we know that A \approx 2.765\times 10^{-4}\,m^{2} and D = 4\times 10^{-3}\,m, then the fraction is:

r = \frac{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2} }{2.765\times 10^{-4}\,m^{2}}

r = 0.045

The fraction of heat dissipated from the top and bottom surfaces is 0.045.

7 0
3 years ago
A mass of 5kg starts from rest and pulls down vertically on a string wound around a disk-shaped, massive pulley. The mass of the
Paha777 [63]

Answer:

c. V = 2 m/s

Explanation:

Using the conservation of energy:

E_i =E_f

so:

Mgh = \frac{1}{2}IW^2 +\frac{1}{2}MV^2

where M is the mass, g the gravity, h the altitude, I the moment of inertia of the pulley, W the angular velocity of the pulley and V the velocity of the mass.

Also we know that:

V = WR

Where R is the radius of the disk, so:

W = V/R

Also, the moment of inertia of the disk is equal to:

I = \frac{1}{2}MR^2

I = \frac{1}{2}(5kg)(2m)^2

I = 10 kg*m^2

so, we can write the initial equation as:

Mgh = \frac{1}{2}IV^2/R^2 +\frac{1}{2}MV^2

Replacing the data:

(5kg)(9.8)(0.3m) = \frac{1}{2}(10)V^2/(2)^2 +\frac{1}{2}(5kg)V^2

solving for V:

(5kg)(9.8)(0.3m) = V^2(\frac{1}{2}(10)1/4 +\frac{1}{2}(5kg))

V = 2 m/s

8 0
3 years ago
Strontium 3890Sr has a half-life of 28.5 yr. It is chemically similar to calcium, enters the body through the food chain, and co
patriot [66]

Answer:

Thus the time taken is calculated as 387.69 years

Solution:

As per the question:

Half life of ^{3890}Sr\, t_{\frac{1}{2}} = 28.5 yrs

Now,

To calculate the time, t in which the 99.99% of the release in the reactor:

By using the formula:

\frac{N}{N_{o}} = (\frac{1}{2})^{\frac{t}{t_{\frac{1}{2}}}}

where

N = No. of nuclei left after time t

N_{o} = No. of nuclei initially started with

\frac{N}{N_{o}} = 1\times 10^{- 4}

(Since, 100% - 99.99% = 0.01%)

Thus

1\times 10^{- 4} = (\frac{1}{2})^{\frac{t}{28.5}}}

Taking log on both the sides:

- 4 = \frac{t}{28.5}log\frac{1}{2}

t = \frac{-4\times 28.5}{log\frac{1}{2}}

t = 387.69 yrs

5 0
3 years ago
plastic bags have replaced for the packing of the most materials. give these advantages and two disadvantages of using plastic o
Nezavi [6.7K]
It is waterproof and more durable
5 0
2 years ago
Other questions:
  • The double inclined plane supports two blocks A and B, each having a weight of 10 lb. If the coefficient of kinetic friction bet
    8·1 answer
  • When are tides lowest? What causes these tides to be lowest?
    11·1 answer
  • To determine a waves frequency you must know the??
    12·2 answers
  • Frequencies of sound waves higher than those we can hear is called?
    9·2 answers
  • A motorcycle starts at rest and accelerates at a rate of 3 meters per second squared (m/s2) over a time period of 5 seconds (s).
    15·1 answer
  • A piece of glass weights 25 g in air, 16.77g in water at 4C and 16.89g in water at 60C. Find the mean coefficient of cubical exp
    9·1 answer
  • Explain the role that heat plays in phase change. You will need to describe heat’s role in the phase change using terms such as
    7·1 answer
  • Which of the following sentences does not contain a type of variation?
    10·2 answers
  • Help ASAP please & thank you ​
    8·1 answer
  • What is the frequency of light with a wavelength of 7.9 x 10^-9 m? ( the speed of light is 3.00 x 10^8)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!