Answer:
3.135 kN/C
Explanation:
The electric field on the axis of a charged ring with radius R and distance z from the axis is E = qz/{4πε₀[√(z² + R²)]³}
Given that R = 58 cm = 0.58 m, z = 116 cm = 1.16m, q = total charge on ring = λl where λ = charge density on ring = 180 nC/m = 180 × 10⁻⁹ C/m and l = length of ring = 2πR. So q = λl = λ2πR = 180 × 10⁻⁹ C/m × 2π(0.58 m) = 208.8π × 10⁻⁹ C and ε₀ = permittivity of free space = 8.854 × 10⁻¹² F/m
So, E = qz/{4πε₀[√(z² + R²)]³}
E = 208.8π × 10⁻⁹ C × 1.16 m/{4π8.854 × 10⁻¹² F/m[√((1.16 m)² + (0.58 m)²)]³}
E = 242.208 × 10⁻⁹ Cm/{35.416 × 10⁻¹² F/m[√(1.3456 m² + 0.3364 m²)]³}
E = 242.208 × 10⁻⁹ Cm/35.416 × 10⁻¹² F/m[√(1.682 m²)]³}
E = 6.839 × 10³ Cm²/[1.297 m]³F
E = 6.839 × 10³ Cm²/2.182 m³F
E = 3.135 × 10³ V/m
E = 3.135 × 10³ N/C
E = 3.135 kN/C
Answer: silicon,or maybe none.
Explanation: I searched it up not really sure sorry
Answer:
Frequency, f = 3.73Hz
Explanation:
The frequency of a simple harmonic 6is given by:
f = w/2pi
But w= Sqrt( k/m)
Where k is the spring constant
And m is the mass
Given:
Mass=0.20kg
Spring constant, k=130N/m
w= Sqrt(130/0.20)
w= Sqrt(650)
w= 25.50 m
Frequency, f = w/2pi
f = 25.50/(2×3.142)
f = 3.73Hz
Motion Energy
I am writing this so it can be more than 20 letters
Well, you should TAKE COVER UNDER A STUDY DESK, TABLE OR AGAINST AN INSIDE WALL. Which is C. This is because, doing this protects you from the falling objects. If you do A or B, you will probably get crushed by falling objects because you are exposed. Hope I helped.