Answer:
t = 123.59s
Explanation:
For the launch pad section:
Vf = Vo + a*t where Vo=0.
Vf = 35*25 = 875m/s
The distance traveled during the launch:

Now the projectile motion, we know that its initial speed is the speed calculated previously and the initial height is the y-component of the previously calculated distance.

where d= 10937.5m; Vo=875m/s.
Solving for t:
t1 = -11.093s t2 = 98.59s
So, the total time of flight will be:

The answer to the problem b.
I'm pretty sure you can find it out by using a speed monitor and compass or just observing it
if there any answer choices tell me.
<h2>
HOPE I HELPED!!!</h2>
<h2 />
Answer:
8:P.E,9:gaining K.E,10:P.E,11:gaining K.E.
Explanation:
it gained potential energy at 8 because it was at its maximum height,and since potential energy is the energy that u posses due to ur height,thats the energy it possesed on the spot 8.as you can see on spot 9 its moving down so as its moving down,it gains kinetic energy,since its an energy possesed by a body due to its motion/movement,thats what it gained at spot 9, it gsained kineti energy because of its movement.and at 10 agian it would gain potential energy ecause of height and on point 11 as its heading upwards it gains kinetic energy because of movement.
Answer:
2.5 x 10⁻⁹ m
Explanation:
E = Energy of photon = 500 eV = 500 x 1.6 x 10⁻¹⁹ J
c = speed of photon = 3 x 10⁸ m/s
λ = wavelength of photon = ?
Energy of photon is given as

inserting the values

λ = 2.5 x 10⁻⁹ m