Answer:
it evaporats
Explanation:
because the sun is so hot that the water will turn into gas hope i helped
Common health issues that can be positively affected, prevented or controlled by exercise.
Answer:
16.2 days
Explanation:
Find the number of halflives:
1/2 * 1/2 = 1/4 so <u>two</u> halflives have passed
2 * 8.1 days = 16.2 days
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:

V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:

hence, after 1.6s the inductor will have a potential difference of 24V
To solve this problem we will apply the concepts of linear mass density, and the expression of the wavelength with which we can find the frequency of the string. With these values it will be possible to find the voltage value. Later we will apply concepts related to harmonic waves in order to find the fundamental frequency.
The linear mass density is given as,



The expression for the wavelength of the standing wave for the second overtone is

Replacing we have


The frequency of the sound wave is



Now the velocity of the wave would be



The expression that relates the velocity of the wave, tension on the string and linear mass density is





The tension in the string is 547N
PART B) The relation between the fundamental frequency and the
harmonic frequency is

Overtone is the resonant frequency above the fundamental frequency. The second overtone is the second resonant frequency after the fundamental frequency. Therefore

Then,

Rearranging to find the fundamental frequency


