Answer:
f = 632 Hz
Explanation:
As we know that for destructive interference the path difference from two loud speakers must be equal to the odd multiple of half of the wavelength
here we know that

given that path difference from two loud speakers is given as


now we know that it will have fourth lowest frequency at which destructive interference will occurs
so here we have



now for frequency we know that


The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.
Answer:
The mnemonic I can use to memorize the metric prefixes in this order is: Gigantic Monsters Killed One Million Men Napping Peacefully. All right, so again, gigantic monsters killed one million men napping peacefully.
I believe it would be Tendonitis
Answer:
B
Explanation:
F = ma , a = F/m
a1 = F/10 and a2 = F/4
Since Force is constant, a2 will we greater than a1