4.48
pH=pKa+log([A-/HA])
25% deprotonated tells us that A- is .25 and that the rest (75% is protonated) thats .75.
4 = pKa + log \frac{.25}{.75}
4 - log \frac{.25}{.75} = pKa
4.48=pKa
Energy, mass, and the speed of light squared.
(E, M, and C^2 respectively).
Hope this helped! :)
Answer:
2.6 kJ
Explanation:
The formula for the amount of heat (q) absorbed by the water is
q = mCΔT
1. Calculate ΔT
ΔT = 23.5 °C - 22.1 °C = 1.4 °C
2. Calculate q
q₂ = mCΔT = 500 g × 4.184 J·°C⁻¹g⁻¹ × 1.4 °C = 2900 J = 2.9 kJ
The correct equation
for the overall reaction can simply be obtained by adding the two separate
equations together. Now when you add the two equations together, the overall K can
be calculated by multiplying the individual K values. Therefore:<span>
K(overall) = K1 * K2 </span>
K(overall) = (1.6 x
10^-10) * (1.5 x 10^7)
<span>K(overall) = 2.4 x
10^-3</span>
Will be letter E cause all of them can combine molecule