Answer:
Newtons first law states that:
<em>If</em><em> </em><em>a</em><em> </em><em>body</em><em> </em><em>i</em><em>s</em><em> </em><em>in</em><em> </em><em>rest</em><em> </em><em>or</em><em> </em><em>motion</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>straight</em><em> </em><em>line</em><em>,</em><em> </em><em>it</em><em> </em><em>remains</em><em> </em><em>at</em><em> </em><em>rest</em><em> </em><em>or</em><em> </em><em>at</em><em> </em><em>motion</em><em> </em><em>in</em><em> </em><em>a</em><em> </em><em>straight</em><em> </em><em>line</em><em> </em><em>with</em><em> </em><em>constant</em><em> </em><em>speed</em><em> </em><em>until</em><em> </em><em>and</em><em> </em><em>unless</em><em> </em><em>and</em><em> </em><em>external</em><em> </em><em>unbalanced</em><em> </em><em>force</em><em> </em><em>acts</em><em> </em><em>on</em><em> </em><em>it</em><em>.</em>
<em>'</em><em>This</em><em> </em><em>law</em><em> </em><em>i</em><em>s</em><em> </em><em>also</em><em> </em><em>known</em><em> </em><em>as</em><em> </em><em>the</em><em> </em><em>law</em><em> </em><em>of</em><em> </em><em>Inertia</em><em>.</em><em>'</em>
Answer:
you absolute buffoon Use Ohms' Law: V = RI
V = (1x10^3)(5x10^-3) = 5 volts
Yes, this is in the range of normal household voltages.
Explanation:
I got you b, V(final)^2=V(initial+2acceleration*displacement
So this turns to (0m/s)^2=(50m/s)^2+2(9.8)(d) so just flip it all around to isolate d so you get
-(50m/s)^2/2(9.8) = d so you get roughly 12.7555 meters up
Answer:
17.6 N
Explanation:
The force exerted by the punter on the football is equal to the rate of change of momentum of the football:

where
is the change in momentum of the football
is the time elapsed
The change in momentum can be written as

where
m = 0.55 kg is the mass of the football
u = 0 is the initial velocity (the ball starts from rest)
v = 8.0 m/s is the final velocity
Combining the two equations and substituting the values, we find the force exerted on the ball:

Answer:
33,458.71 turns
Explanation:
Given: L = 37 cm = 0.37 m, B= 0.50 T, I = 4.4 A, n= number of turn per meter
μ₀ = Permeability of free space = 4 π × 10 ⁻⁷
Solution:
We have B = μ₀ × n × I
⇒ n = B/ (μ₀ × I)
n = 0.50 T / ( 4 π × 10 ⁻⁷ × 4.4 A)
n = 90,428.94 turn/m
No. of turn through 0.37 m long solenoid = 90,428.94 turn/m × 0.37
= 33,458.71 turns