Answer:
.a = 849.05 m / s²
Explanation
The centripetal acceleration is
a = v² / r
Linear and angular velocity are related
v = w r
Angular velocity and frequency are related by
w = 2π f
Let's replace
a = w² r
a = 4π² f² r
Let's reduce to the SI system
f = 2.30 rev / s (2π rad / 1 rev) = 14.45 rad / s
.r = 10.3 cm = 0.103 m
Let's calculate
a = 4π² 14.45² 0.103
.a = 849.05 m / s²
The answer for this question is A
Answer:
E) is described by all of these
Explanation:
The magnetic force on a charged particle is expressed as:
F = qv * B = qvBsinθ
Where,
q = charge on particle
θ = angle between the magnetic field and the particle velocity.
v = velocity of the particle
B = magnitude of field vector
From here, we could denote that magnetic force, F depends on charge on particle, velocity of particle, magnitude of field vector.
The magnetic force on a charged particle is at right angles to both the velocity of the particle. The magnetic force and magnetic field in a charged particle are perpendicular to each other, the right hand rule is used to determine the direction of force.
The correct option is E.
1 milliliter = 1 cubic centimeter (cm^3)
Answer:
v₂=- 34 .85 m/s
v₁=0.14 m/s
Explanation:
Given that
m₁=70 kg ,u₁=0 m/s
m₂=0.15 kg ,u₂=35 m/s
Given that collision is elastic .We know that for elastic collision
Lets take their final speed is v₁ and v₂
From momentum conservation
m₁u₁+m₂u₂=m₁v₁+m₂v₂
70 x 0+ 0.15 x 35 = 70 x v₁ + 0.15 x v₂
70 x v₁ + 0.15 x v₂=5.25 --------1
v₂-v₁=u₁-u₂ ( e= 1)
v₂-v₁ = -35 --------2
By solving above equations
v₂=- 34 .85 m/s
v₁=0.14 m/s