<span> The formula for </span>measuring<span> density is Density = </span>Mass/Volume<span>, or D=M/V. The / means “per” or “for each,” which in math is the same as “divided by.”</span>
Answer:
The atomic mass of gallium (Ga) = <u>69.723 g/mol</u>
Explanation:
Given: Two isotopes of Gallium (Ga) are Gallium-69 (⁶⁹Ga) and Gallium-71 (⁷¹Ga)
<u>For ⁶⁹Ga: </u>
Relative abundance = 60.12% = 60.12 ÷ 100 = 0.6012; Atomic mass = 68.9257 g/mol
<u>For ⁷¹Ga:</u>
Relative abundance = 39.88% = 39.88 ÷ 100 = 0.3988; Atomic mass = 70.9249 g/mol
∴ The atomic mass of Ga = (Relative abundance of ⁶⁹Ga × Atomic mass of ⁶⁹Ga) + (Relative abundance of ⁷¹Ga × Atomic mass of ⁷¹Ga)
⇒ Atomic mass of Ga = (0.6012 × 68.9257 g/mol) + (0.3988 × 70.9249 g/mol) = <u>69.723 g/mol</u>
<u>Therefore, the atomic mass of gallium (Ga) = 69.723 g/mol</u>
Answer: 18.65L
Explanation:
Given that,
Original volume of oxygen (V1) = 30.0L
Original temperature of oxygen (T1) = 200°C
[Convert temperature in Celsius to Kelvin by adding 273.
So, (200°C + 273 = 473K)]
New volume of oxygen V2 = ?
New temperature of oxygen T2 = 1°C
(1°C + 273 = 274K)
Since volume and temperature are given while pressure is held constant, apply the formula for Charle's law
V1/T1 = V2/T2
30.0L/473K = V2/294K
To get the value of V2, cross multiply
30.0L x 294K = 473K x V2
8820L•K = 473K•V2
Divide both sides by 473K
8820L•K / 473K = 473K•V2/473K
18.65L = V2
Thus, the new volume of oxygen is 18.65 liters.