Answer:
Sucrose: glucose and fructose
Explanation:
<em>What monosaccharides will result from the hydrolysis of sucrose?</em>
<em>Sucrose</em> is a <em>disaccharide</em> composed of 2 different <em>monosaccharides</em>: glucose and fructose joining by a 1 ⇒ 2 bond. These monosaccharides will be released upon the hydrolysis of sucrose.
<em>What monosaccharide will result from the hydrolysis of starch?</em>
<em>Starch</em> is a <em>polysaccharide</em> composed of numerous glucose monomers joined by glycosidic bonds (1 ⇒ 4 and 1 ⇒ 6). These monosaccharides will be released upon the hydrolysis of starch.
The pH of the solution is 2.54.
Explanation:
pH is the measure of acidity of the solution and Ka is the dissociation constant. Dissociation constant is the measure of concentration of hydrogen ion donated to the solution.
The solution of C₆H₂O₆ will get dissociated as C₆HO₆ and H+ ions. So the molar concentration of 0.1 M is present at the initial stage. Lets consider that the concentration of hydrogen ion released as x and the same amount of the base ion will also be released.
So the dissociation constant Kₐ can be written as the ratio of concentration of products to the concentration of reactants. As the concentration of reactants is given as 0.1 M and the concentration of products is considered as x for both hydrogen and base ion. Then the
![K_{a}=\frac{[H^{+}][HB] }{[reactant]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BHB%5D%20%7D%7B%5Breactant%5D%7D)
[HB] is the concentration of base.


Then
![pH = - log [x] = - log [ 0.283 * 10^{-2}]\\ \\pH = 2 + 0.548 = 2.54](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5Bx%5D%20%3D%20-%20log%20%5B%200.283%20%2A%2010%5E%7B-2%7D%5D%5C%5C%20%5C%5CpH%20%3D%202%20%2B%200.548%20%3D%202.54)
So the pH of the solution is 2.54.
Answer:
See the images below
Step-by-step explanation:
To draw a dot diagram of an atom, you locate the element in the Periodic Table and figure out how many valence electrons it has. Then you distribute the electrons as dots around the atom,
a. Silicon.
Si is in Group 14, so it has four valence electrons.
b. Xenon
Xenon is in Group 18, so it has eight valence electrons. We group them as four pairs around the xenon atom.
c. Calcium
Calcium is in Group 2, so it has two valence electrons. They are in a single subshell, so we write them as a pair on the calcium atom.
d. Water
Oxygen is in Group 16, so it has six valence electrons. The hydrogen atoms each contribute one electron, so there are eight valence electrons.
Chemists often use a dash to represent a pair of electrons in a bond.