The amount of heat deposited on the skin is 2.26 kJ.
<h3>What is the amount of heat given off by 1.0 g of steam?</h3>
The amount of heat given off by steam is determined using the formula below:
Quantity of heat = mass * latent heat of vaporization.
Moles of steam = 1.0/18
Heat = 1.0/18 * 40.7
Heat deposited = 2.26 kJ
In conclusion, the quantity of heat is determined from the latent heat of vaporization and the moles of steam.
Learn more about heat of vaporization at: brainly.com/question/26306578
#SPJ1
<u>Given:</u>
Mass of solvent water = 4.50 kg
Freezing point of the solution = -11 C
Freezing point depression constant = 1.86 C/m
<u>To determine:</u>
Moles of methanol to be added
<u>Explanation:</u>
The freezing point depression ΔTf is related to the molality m through the constant kf, as follows:
ΔTf = kf*m
where ΔTf = Freezing point of pure solvent (water) - Freezing pt of solution
ΔTf = 0 C - (-11.0 C) = 11.0 C
m = molality = moles of methanol/kg of water = moles of methanol/4.50 kg
11.0 = 1.86 * moles of methanol/4.50
moles of methanol = 26.613 moles
Ans: Thus around 26.6 moles of methanol should be added to 4.50 kg of water.
360 mg / 1000 => 0.36 g
molar mass => 180 /mol
number of moles:
mass of solute / molar mass
0.36 / 180 => 0.002 moles
Volume solution = 200 mL / 1000 => 0.2 L
M = n / V
M = 0.002 / 0.2
M = 0.01 mol/L
hope this helps!
yes substances Do react by mass