The enthalpy of reaction for the combustion of ethane 2CH₃CH₃ + 7O₂ → 4CO₂ + 6H₂O calculated from the average bond energies of the compounds is -2860 kJ/mol.
The reaction is:
2CH₃CH₃ + 7O₂ → 4CO₂ + 6H₂O (1)
The enthalpy of reaction (1) is given by:
(2)
Where:
r: is for reactants
p: is for products
The bonds of the compounds of reaction (1) are:
- 2CH₃CH₃: 2 moles of 6 C-H bonds + 2 moles of 1 C-C bond
- 7O₂: 7 moles of 1 O=O bond
- 4CO₂: 4 moles of 2 C=O bonds
- 6H₂O: 6 moles of 2 H-O bonds
Hence, the enthalpy of reaction (1) is (eq 2):

Therefore, the enthalpy of reaction for the combustion of ethane is -2860 kJ/mol.
Read more here:
brainly.com/question/11753370?referrer=searchResults
I hope it helps you!
Answer:
Hey do you know if "horsleyjaydyn" is a girl you commented once she was a guy so
Explanation:
Answer:

Explanation:
Your nuclear equation is

The main point to remember in balancing nuclear equations is that
- the sum of the superscripts and must be the same on each side of the equation.
- the sum of the subscripts must be the same on each side of the equation.
Then
85 = 0 + y, so y = 85 - 0 = 0
35 = -1 + x, so x = 35 + 1 = 36
The nucleus with atomic number 36 and atomic mass 85 is krypton-85.
The nuclear equation becomes
