The correct answer is B. Solubility describes the amount of solute that can be dissolved in a solvent. This value is not constant is affected by many factors. One factor is the temperature. An increase in temperature, a corresponding change in solubility also can be observed. The increase leads to a decrease in the solubility and the opposite. A decrease is observed since gas molecules are now has enough energy to escape the liquid phase and go to the gas phase.
Answer: Option (B) is the correct answer.
Explanation:
Equilibrium constant is defined as the relationship present between the amounts of products and reactants which are there at equilibrium in a reversible chemical reaction at a given temperature.
For example, 
Mathematically, ![K_{eq} = [C][D]](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5BC%5D%5BD%5D)
As the value of equilibrium constant depends on rate constants of the forward and reverse reactions. And, this rate of reaction also changes with change in pressure and temperature.
Therefore, it will also lead to change in equilibrium constant but it does not depend on initial amount pf reactants.
Thus, we can conclude that in general, the value of the equilibrium constant for a chemical reaction does NOT depend on the initial amounts of reactants present.
Answer:
A. 30cm³
Explanation:
Based on the chemical reaction:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
<em>1 mol of calcium carbonate reacts with 2 moles of HCl to produce 1 mol of CO₂</em>
<em />
To solve this question we must convert the mass of each reactant to moles. With the moles we can find limiting reactant and the moles of CO₂ produced. Using PV = nRT we can find the volume of the gas:
<em>Moles CaCO₃ -Molar mass: 100.09g/mol-</em>
1.00g * (1mol / 100.09g) = 9.991x10⁻³ moles
<em>Moles HCl:</em>
50cm³ = 0.0500dm³ * (0.05 mol / dm³) = 2.5x10⁻³ moles
For a complete reaction of 2.5x10⁻³ moles HCl there are necessaries:
2.5x10⁻³ moles HCl * (1mol CaCO₃ / 2mol HCl) = 1.25x10⁻³ moles CaCO₃. As there are 9.991x10⁻³ moles, HCl is limiting reactant.
The moles produced of CO₂ are:
2.5x10⁻³ moles HCl * (1mol CO₂ / 2mol HCl) = 1.25x10⁻³ moles CO₂
Using PV = nRT
<em>Where P is pressure = 1atm assuming STP</em>
<em>V volume in L</em>
<em>n moles = 1.25x10⁻³ moles CO₂</em>
<em>R gas constant = 0.082atmL/molK</em>
<em>T = 273.15K at STP</em>
<em />
V = nRT / P
1.25x10⁻³ moles * 0.082atmL/molK*273.15K / 1atm = V
0.028L = V
28cm³ = V
As 28cm³ ≈ 30cm³
Right option is:
<h3>A. 30cm³</h3>
Answer:
The pH of a solution of 0.00278 M of HClO₄ is 2.56
Explanation:
pH is a measure of acidity or alkalinity that indicates the amount of hydrogen ions present in a solution or substance and is calculated as:
pH= - log [H⁺]= - log [H₃O⁺]
On the other hand
, a Strong Acid is that acid that in an aqueous solution dissociates completely. In other words, a strong acid completely dissociates into hydrogen ions and anions in solution.
HClO₄ is a strong acid, so in aqueous solution it will be totally dissociated. Then, the concentration of protons is equal to the initial concentration of acid and the pH will be calculated:
pH= - log 0.00278
pH= 2.56
<u><em>The pH of a solution of 0.00278 M of HClO₄ is 2.56</em></u>
Answer:
Complete ionic:
.
Net ionic:
.
Explanation:
Start by identifying species that exist as ions. In general, such species include:
- Soluble salts.
- Strong acids and strong bases.
All four species in this particular question are salts. However, only three of them are generally soluble in water:
,
, and
. These three salts will exist as ions:
- Each
formula unit will exist as one
ion and one
ion. - Each
formula unit will exist as one
ion and two
ions (note the subscript in the formula
.) - Each
formula unit will exist as one
and two
ions.
On the other hand,
is generally insoluble in water. This salt will not form ions.
Rewrite the original chemical equation to get the corresponding ionic equation. In this question, rewrite
,
, and
(three soluble salts) as the corresponding ions.
Pay attention to the coefficient of each species. For example, indeed each
formula unit will exist as only one
ion and one
ion. However, because the coefficient of
in the original equation is two,
alone should correspond to two
ions and two
ions.
Do not rewrite the salt
because it is insoluble.
.
Eliminate ions that are present on both sides of this ionic equation. In this question, such ions include one unit of
and two units of
. Doing so will give:
.
Simplify the coefficients:
.