Answer: The pair that consists of a base and its conjugate acid in that order.
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.



is gaining a proton, thus it is considered as a brønsted-lowry base and after gaining a proton, it forms
which is a conjugate acid.
Quantitative data is numerical.
Qualitative data is non-numerical.
Hope this helps.
have a great day.
Answer:
[HOCH₂CH₂OH] = 24.1 m
Explanation:
Ethylene glycol → HOCH₂CH₂OH
60% by mass means that 60 g of ethylene glycol are contained in 100 g of solution.
Solution mass = Solute mass + Solvent mass
100 g = 60 g + Solvent mass
Solvent mass = 40 g
Molality are the moles of solute contained in 1kg of solvent.
We determine the moles of solute → 60 g . 1mol/62 g = 0.967 moles
We convert the mass of solvent from g to kg → 40 g . 1kg/1000 g = 0.04 kg
Molality → 0.967 mol / 0.04 kg = 24.1 m
The balanced reaction equation for the combustion of butane is as follows;
C₄H₁₀ + 13/2O₂ ---> 4CO₂ + 5H₂O
the limiting reactant in this reaction is C₄H₁₀ This means that all the butane moles are consumed and amount of product formed depends on the amount of C₄H₁₀ used up.
stoichiometry of C₄H₁₀ to H₂O is 1:5
mass of butane used - 6.97 g
number of moles - 6.97 g / 58 g/mol = 0.12 mol
then the number of water moles produced - 0.12 mol x 5 = 0.6 mol
Therefore mass of water produced - 0.6 mol x 18 g/mol = 10.8 g
Answer:
The final volume of the sample of gas
= 0.000151 
Explanation:
Initial volume
= 200 ml = 0.0002
Initial temperature
= 296 K
Initial pressure
= 101.3 K pa
Final temperature
= 336 K
Final pressure
= K pa
Relation between P , V & T is given by

Put all the values in the above equation we get

= 0.000151 
This is the final volume of the sample of gas.