To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as

Where,


Therefore the frequency would be given as


The frequency is directly proportional to the angular velocity therefore



Now the maximum speed from the simple harmonic movement is given by

Where
A = Amplitude
Then replacing,


Therefore the maximum speed of a point on the string is 3.59m/s
velocity of the physics instructor with respect to bus

acceleration of the bus is given as

acceleration of instructor with respect to bus is given as

now the maximum distance that instructor will move with respect to bus is given as




so the position of the instructor with respect to door is exceed by

so it will be moved maximum by 3 m distance
Answer:
Jesseca wanted to create a material that reflected most of the light that fell on it.
Explanation: The Graphite was the material in the passage that had reflected most of the light.
Naturally we assume that 10000 km/hr is initial velocity (same as being shot from a cannon), and no air resistance. With so high a velocity, the effect of diminishing gravity with increasing radius must be taken into account, so you use an energy solution. M is earth mass, r is earth radius.
KE/m = (9000000/3600)^2/2 = 3858025 J/kg
ΔPE/m = (PE(at height) - PE(at surface))/m = -GM/(r+h) + GM/r
KE/m = ΔPE/m
KE/m - GM/r = -GM/(r+h)
h = -GM / (KE/m - GM/r) - r = 335665.44 m
(Using G = 6.673E-11 Nm^2/kg^2, M = 5.9742E24 kg, r = 6378100 m)