The answer I would choose is the third one
Answer:
12.9 m³ is the new volume
Explanation:
As the temperature keeps on constant, and the moles of the gas remains constant too, if we decrease the pressure, the volume will increase. If the volume is decreased, pressure will be higher.
The relation is this: P₁ . V₁ = P₂ . V₂
1 atm . 0.93m³ = 0.072 atm . V₂
0.93m³ .atm / 0.072 atm = V₂
V₂ = 12.9 m³
In conclusion and as we said, pressure has highly decreased so volume has highly increased.
Answer:
The Solar System moves through the galaxy with about a 60° angle between the galactic plane and the planetary orbital plane. The Sun appears to move up-and-down and in-and-out with respect to the rest of the galaxy as it revolves around the Milky Way
Explanation:
Hope you like it
The change in temperature had the greatest effect at changing the volume of the balloon.
<h3>What are the gas laws?</h3>
The gas laws are used to describe the parameters that has to do with gases.
Given that;
P1 = 98.5 kPa
T1 = 18oC or 291 K
V1 = 74.0 dm3
P2 = 7.0 kPa
V2 = ?
T2 = 18oC or 291 K
P1V1/T1 = P2V2/T2
P1V1T2 =P2V2T1
V2= P1V1T2/P2T1
V2 = 98.5 kPa * 74.0 dm3 * 291 K/ 7.0 kPa * 291 K
V2 = 1041.3 dm3
When;
V1 = 1041.3 dm3
T1 = 291 K
V2 = ?
T2 = 80oC or 353 K
V1/T1 = V2/T2
V1T2 = V2T1
V2 = V1T2/T1
V2 = 1041.3 dm3 * 353 K/291 K
V2 = 1263 dm3
The change in temperature had the greatest effect at changing the volume of the balloon.
Given that
V1 = 100 cm^3
T1 = 273 K
P1 = 1.01 * 10^5 Pa
V2 = ?
P2 = 3.00 x 10^-4 Pa
T2 = -180oC or 255 K
V2= P1V1T2/P2T1
V2 = 1.01 * 10^5 Pa * 100 cm^3 * 255 K / 3.00 x 10^-4 Pa * 273 K
V2 = 3.14 * 10^10 cm^3
Learn more about gas laws:brainly.com/question/12669509
#SPJ1
Answer:
Since this is old, im just gonna get these points, don't wan't them to go to waste lm.ao
Explanation: