Answer:
16.4 °C
Explanation:
Boiling point elevation is the phenomenon in which the boiling point of a solvent will increase when another compound is added to it; meaning that athe resultant solution has a higher boiling point than its pure solvent.
Using the ebullioscopic constant,
ΔT = m * i * Kb
Where,
Δ T is the temperature difference between the boiling point of the solution, Temp.f and boiling point of the pure solvent, Temp.i
Kb is the ebulliscope factor of water = 0.510 °C.kg/mol
i is the van hoffs number = 1
m is the molality in mol/kg.
Calculating the molality of the solution,
Temp.i = 100°C
Temp.f = 104.5 °C
= 4.5/(1*0.510)
= 8.8235 mol/kg
Freezing point depression is defined as the decrease in the freezing point of a solvent on the addition of a solute.
Using the same equation, but kf = 1.86 °C.kg/mol
ΔT = m * i * Kf
Temp.i = freezing point of water = 0°C
Temp.f = (8.8235*1.86) - 0
= 16.412 °C
Freezing point of the solution = 16.4 °C
Answer:
i am rrly bad at chemistry srry fffdfhdhdgduehgfhfhdhhfhdhdhdhdhdudhd
Answer:
The electrons are supplied by the species getting oxidized. They move from anode to the cathode in the external circuit. The external battery supplies the electrons. They enter through the cathode and come out through the anode
Answer: There are
molecules present in 183.2 grams of
gas.
Explanation:
Given: Mass = 183.2 g
Number of moles is the mass of substance divided by its molar mass.
As molar mass of water is 18 g/mol. Therefore, moles of
are calculated as follows.

According to the mole concept, there are
molecules present in one mole of a substance.
Hence, molecules present in 10.17 moles are calculated as follows.

Thus, we can conclude that there are
molecules present in 183.2 grams of
gas.
Answer:
Barium has the same number of valence electrons as calcium
Explanation:
Valence electrons is the number of electrons of an atom on the outer shell.
Those valence electrons can participate in the formation of a chemical bond (if the outer shell is not closed); in a single covalent bond, both atoms in the bond contribute one valence electron in order to form a shared pair.
<u>Calcium</u> is an atom, part of group 2, called the alkaline earth metals. The alkaline earth metals have 2 valence electrons.
<u>Sulfur </u>is part of a group 16, called the chalcogens or oxygen family. Those atoms have 6 valence electrons. They can form a bound with atoms of group 2 such as calcium, but do not have the same number of valence electrons.
<u>Potassium</u> is part of group 1, called the alkali metals or lithium family. Those atoms have 1 valence electrons. That means Potassium do not have the same number of valence electrons like calcium.
<u>Neon</u> is part of group 18, the noble gasses. Those are stable atoms, which means they have 8 valence electrons. They do not have the same number of valence electrons like Calcium.
<u>Barium</u> an atom, part of group 2, called the alkaline earth metals. The alkaline earth metals have 2 valence electrons. Calcium is also part of this group.
This means barium has the same number of valence electrons as Calcium.