Answer:
Q14: 17,140 g = 17.14 kg.
Q16: 504 J.
Explanation:
<u><em>Q14:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = 3600 x 10³ J).
m is the mass of the ice (m = ??? g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 100.0°C - 0.0°C = 100.0°C).
∵ Q = m.c.ΔT
∴ (3600 x 10³ J) = m.(2.1 J/g.°C).(100.0°C)
∴ m = (3600 x 10³ J)/(2.1 J/g.°C).(100.0°C) = 17,140 g = 17.14 kg.
<u><em>Q16:</em></u>
- To solve this problem, we can use the relation:
<em>Q = m.c.ΔT,</em>
where, Q is the amount of heat absorbed by ice (Q = ??? J).
m is the mass of the ice (m = 12.0 g).
c is the specific heat of the ice (c of ice = 2.1 J/g.°C).
ΔT is the difference between the initial and final temperature (ΔT = final T - initial T = 0.0°C - (-20.0°C) = 20.0°C).
∴ Q = m.c.ΔT = (12.0 g)(2.1 J/g.°C)(20.0°C) = 504 J.
Gamma rays
Explanation:
Every member of the electromagnetic radiation has commensurate amount of energy, wavelength and frequencies.
The electromagnetic waves with the shortest wavelengths and the highest frequencies are the gamma rays.
- Gamma rays also are the most energetic electromagnetic radiation.
- The short wavelength of gamma rays suggests that more waves passes with times.
- It's high frequency shows that a high amount of wave passes through a point at each passing of time.
- These factors combines to give its high energy. Energy of an electromagnetic radiation is a factor of its wavelength and frequency.
- Gamma rays are ionizing radiations which causes ionization of gas molecules.
Learn more:
Radiation brainly.com/question/10726711
#learnwithBrainly
Both of you are overlooking a pretty big component of the question...the Group I cation isn't being dissociated into water. We're testing the solubility of the cation when mixed with HCl. And this IS a legitimate question, seeing as our lab manual is the one asking.
<span>By the way, the answer you're looking for is "Because Group I cations have insoluble chlorides". </span>
<span>"In order...to distinguish cation Group I, one adds HCl to a sample. If a Group I cation is present in the sample, a precipitate will form." </span>