Answer:
Presence of lone pairs of electrons
Explanation:
According to VSEPR theory, the presence of lone pairs caused increased repulsion of electron pairs on the valence shell of the centeral atom of the molecule. This decreases or distorts the bond angle. The decrease in bond ange depends on the number of lone pairs present on the valence shell of the central atom of the molecule. Ammonia has only one lone pair hence the bond angle is 107°, water has two lone pairs and the bond angle is 104°. Compare this this with the bond angle of 109° in methane which has only bond pairs and no lone pairs.
Answer:
A. Up
B. Out
C. Out
D. To equilibrum
Explanation:
a. The reaction in an exothermic reaction so this means heat is given off. If the cylinder is thin enough heat will transfer to the water bath
b. Since the products will create heat which will increase pressure, the piston in an attempt to maintaining a constant pressure will move up to accommodate building pressure.
c. Heat will flow out of the gaseous mixture as this reaction creates heat as a product as well
d. Heat will flow out in the capacity to create an equilibrium with the water bath that it is in.
The sun's gravity pulls the planet toward the sun, which changes the straight line of direction into a curve. This keeps the planet moving in an orbit around the sun. Because of the sun's gravitational pull, all the planets in our solar system orbit around it.
Answer:
[CaCl₂·2H₂O] = 1.43 m
Explanation:
Molality is mol of solute / kg of solvent.
Mass of solvent = 40 g
Let's convert g to kg → 40 g / 1000 = 0.04 kg
Let's determine the moles of solute (mass / molar mass)
8.43 g / 146.98 g/mol = 0.057 mol
Molality = 0.057 mol / 0.04 kg → 1.43
Answer:
When an atom gains/loses an electron, the atom becomes charged, and is called an ion. Gaining an electron results in a negative charge, so the atom is an anion