Answer:
c =0.2 J/g.°C
Explanation:
Given data:
Specific heat of material = ?
Mass of sample = 12 g
Heat absorbed = 48 J
Initial temperature = 20°C
Final temperature = 40°C
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 40°C -20°C
ΔT = 20°C
48 J = 12 g×c×20°C
48 J =240 g.°C×c
c = 48 J/240 g.°C
c =0.2 J/g.°C
the answer is probably A. improper orientation of molecules
Answer:
4 moles of SO3 will be produced from 6 moles of oxygen.
Explanation:
From the reaction given
S8 + 12 O2 ----> 8 SO3
12 moles of oxygen reacts to form 8 moles of SO3
if 6 moles of oxygen were to be used instead, it has been reduced to half of the original mole of oxygen used. Then the moles of SO3 will also be reduced to half.
6 moles of O2 will yield 4 moles of SO3
12 moles = 8 moles
6 moles = ?
? = 6 * 8 / 12
? = 48/ 12
? = 4 moles of SO3.
Answer:
1.76 g is the mass of Ne is in the container.
Explanation:
We use the equation given by ideal gas which follows:
where,
P = pressure of the gas = 650 mm Hg
V = Volume of the gas = 2.50 L
T = Temperature of the gas =
R = Gas constant =
n = number of moles of Ne gas = ?
Putting values in above equation, we get:

Also, molar mass of Ne = 20.1797 g/mol
So, 
<u>1.76 g is the mass of Ne is in the container.</u>