In a food chain, energy is passed through one link to another. When a herbivore eats only a certain fraction of the energy, (which comes from the food) it becomes new body mass; the rest of the energy is lost as waste or used up by the herbivore in order to carry out its life processes (ex. movement, digestion, reproduction). It doesn’t necessarily threaten the plants survival, there’s also a benefit. When a animals poops out the fruit (defecate) in another area those seeds get carried to new places with the help of a dab of fertilizer and a little bit of moisture. They also help supply nutrients when they die and decompose.
I believe the answer is c
. 1s2 2s2 2p6 3s2 3p6 3d10 One point is earned for the correct configuration.
Answer:
- Option A) <u><em>Mg + Cl₂ → MgCl₂</em></u>
Explanation:
The law of conservation of mass is guaranteed in a chemical equation. Since the mass of the atoms do not change, that means that the number of each kind of atoms in the reactant side is equal to the number of atoms of the same kind in the product side.
The first equation is:
<em><u>A) Mg + Cl₂ → MgCl₂</u></em>
<u />
Number of atoms:
atom Reactant side Product side
Mg 1 1
Cl 2 2
Therefore, the table displays that there are the same number of atoms of each kind on both sides, showing that<em> the total mass during the chemical reaction stays the same.</em>
<u />
<em><u>B) NaOH + MgCl₂ → NaCl + MgOH</u></em>
This equation displays 2 atoms of Cl on the left side and 1 atom of Cl on the right side; thus, it is not showing that the total mass stays the same during the chemical reaction.
<em />
<u><em>C) 2Na + 2H₂O → NaOH + H₂</em></u>
Neither the sodium, nor oxygen, nor hydrogen atoms are balanced. Thus, this does not show that the total mass stays the same.
<u><em /></u>
<u><em>D) H₂O + O₂ → H₂O</em></u>
The reactant side contains 3 oxygen atoms and the product side contains 1 atoms of oxygen; thus, this is not balanced: it does not show that the total mass stays de same during the chemical reaction.