1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horsena [70]
3 years ago
14

Assume the sample below is a perfectly random sample of students at a school. How much greater is the mean of the

Mathematics
2 answers:
Semenov [28]3 years ago
5 0

It was hard to do because you wrote it out next time try attaching the file but if my calculations are correct its C.)0.75

igor_vitrenko [27]3 years ago
3 0

Answer:

0.75

Step-by-step explanation:

The table is not well presented (See Attachment)

There are at least two approaches to this question

Method 1:  

Steps

1. Calculate the mean of reported heights

Mean of reported heights = (61+68+57.5+48.5+75+65+80+68+69+63)/10

Mean of reported heights = 655/10

Mean of reported heights = 65.5

2. Calculate the mean of measured heights

Mean of measured heights = (62 + 68 + 56.5 + 47 + 72 + 65 + 78 + 67 + 69.5 + 62.5)/10

Mean of measured heights = 647.5/10

Mean of measured heights = 64.75

3. Get their difference

Difference = Mean of reported heights - Mean of measured heights

Difference = 65.5 - 64.75

Difference = 0,75

Method 2: Calculate the mean of their difference

Mean of difference = Sum of difference / Number of observations

Mean of difference = (-1 + 0 + 1 + 1.5 + 3 + 0 + 2 + 1 – 0.5 + 0.5)/10

Mean of difference = 7.5/10

Mean of difference = 0.75

Note that in both cases, the result is 0,75.

Hence, the reported heights at the school is 0.75 greater than the actual measured height

You might be interested in
Meghan also wants to walk to get some exercise, rather than going to the gym. She decides to walk along arc AB. How far will she
Karo-lina-s [1.5K]

Answer:

π*AB

Step-by-step explanation:

I m not quite sure about your question because it is lack of details.

However, as my per understanding, Meghan decides to walk along arc AB it means she walks an interval equal to the circumference of the circle AB.

So, apply the formula in caculating the circumference of the circle, we have:

π*d = π*AB

So, she walk a π*AB distance.

8 0
3 years ago
3.8y+4/7x+2=0 for y =?
tia_tia [17]
<span> y=(-4/7x-2)8/3 is the correct awnser to your question.</span>
6 0
3 years ago
What two numbers multiply to -14 and add to -5
krek1111 [17]

Answer:

these are two answers i got

-14=

-5=

6 0
3 years ago
Read 2 more answers
Use the simple interest formula 1=prt find the amount that needs to be invested at 7%per year for 12 years in order to earn 2500
Inessa [10]
The answer is 1358.70
8 0
2 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
Other questions:
  • Find the value of x. A. 3 B. 2 C. 5 D. 6
    12·2 answers
  • Evaluate the determinate of the matrix with work shown.
    13·1 answer
  • What is the number in standard form?<br><br> 4.9×108
    15·2 answers
  • What is the value of x?​
    6·1 answer
  • Marcelina uses a blend of white corn and yellow corn to make tortilla chips at her restaurant. She needs to buy
    7·1 answer
  • 14. Taxi company A charges $2 per ride plus $0.25 per mile. Taxi company B charges $3 per ride plus $0.15 per mile. Which equati
    11·1 answer
  • Pls help, i will give brainliest:
    6·2 answers
  • Solve for x.<br> X2 - 20x+ 100 = 0
    15·1 answer
  • 100 POIntsSarah has been running a dog-walking business since 2010. She walks dogs twice a day, takes them to the park, and retu
    5·1 answer
  • STOP SCROLLING AND HELP ME WITH THIS!! IT IS DUE TOMORROW
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!