1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hodyreva [135]
3 years ago
7

A package is dropped from a helicopter that is moving upward at15m/s. If it takes 8.0 sec before the package strikes the ground,

how high above the ground was the package when it was released? Neglect air resistance.
Physics
1 answer:
Rainbow [258]3 years ago
7 0

Answer:

313.6 m

Explanation:

From the question given above, the following data were obtained:

Time (t) = 8 s

Acceleration due to gravity (g) = 9.8 m/s²

Height (h) =?

The height at which the package was dropped can be obtained as follow:

h = ½gt²

h = ½ × 9.8 × 8²

h = 4.9 × 64

h = 313.6 m

Thus, the package was at a height of 313.6 m when it was dropped.

You might be interested in
2. A solenoid. Suppose the south end of a bar magnet was introduced to the right end of this solenoid at a constant velocity. Wh
Studentka2010 [4]

Answer:

2) deflection must be towards the negative side of the voltage.

4) the correct statements are: b and c

Explanation:

2) This question is based on Faraday's law of induction, when we introduce a magnet in a solenoid an induced current is produced that generates a voltage that is given by

           E = - N d \phi_{B} / dt

where \phi_{B} = B. A

The bold are vectors

Therefore, when applying this formula to our case, the induction lines of the magnetic field increase as we approach the solenoid, as the South pole approaches the lines are in the direction of the magnet, therefore the normal to the solenoid that has an outgoing direction and the magnetic field has 180º between them and the cos 180 = -1; consequently the deflection must be towards the negative side of the voltage.

4) From the Faraday equation we can see that the inductive electromotive force depends

* The magnitude of B that changes over time

* The area of ​​the loop that changes over time

* The angle between B and the area that changes over time

* A combination of the above

With this analysis we will review the different alternatives given

a) False. It takes a temporary change and an absolute value of B

b) True. As the speed decreases, the change in B decreases, that is, dB / dt decreases

c) True. The current is induced in each turn, if there is a smaller number the total current will be smaller

d) False. A temporary change of area is needed, in addition to increasing the area the current increases

We can see that the correct statements are: b and c

5 0
3 years ago
A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per un
Zarrin [17]

Answer:

steady state temperature =88.7deg C

t=time within  1 deg C of it steady state is 8.31s

Explanation:

A 1 m long wire of diameter 1mm is submerged in an oil bath of temperature 25-degC. The wire has an electrical resistance per unit length of 0.01 Ω/m. If a current of 100 A flows through the wire and the convection coefficient is 500W/m2K, what is the steady state temperature of the wire? From the time the current is applied, how long does it take for the wire to reach a temperature within 1-degC of the steady state value? The density of the wire is 8,000kg/m3, its heat capacity is 500 J/kgK and its thermal condu

The diameter of the wire is known to be=1mm

properties=

The density of the wire is 8,000 kg/m3,

heat capacity is 500 J/kgK

themal conductivity is 20W/m.K

electrical resistance per unit length of 0.01 Ω/m

from lump capavity method

B_{i} =\frac{hr/2}{k}

500*(2.5*10^-4)/20

0.006<0.1

we know also, to find steady state temperature

\piDh(T-Tinf)=I^{2} R_{e}

make T the subject of the equation , we have

T=25+\frac{100^2*0.01}{\pi*0.001*500 }

T=88.7 degC

rate of chnage in temperature

dT/dt=\frac{I^2*Re}{rho*c*\pi*D^2/4 } -\frac{4h}{rho*c*D} (T-Tinf)

at t=o and integrating both sides\frac{T-Tinf-(I^2*Re/\pi*Dh) }{Ti-Tinf-(I^2*Re/\pi*Dh } =exp\frac{-4ht}{rho*c*D}

we have

\frac{87.7-25-63.7}{25-25-63.7} =exp\frac{4*500t}{8000*500*0.001}

t=8.31s

steady state temperature =88.7deg C

t=time within  1 degC of it steady stae is 8.31s

7 0
3 years ago
A family car has a mass of 1400 kg. In an accident it hits a wall and goes from a speed of 27 m/s to a standstill in 1.5 seconds
horrorfan [7]

Answer:

The force has been reduced by 8018 N

Explanation:

The impulse exerted on the car during the crash is equal to the product of the force exerted and the duration of the collision, and it is also equal to the change in momentum of the car. So we can write:

F\Delta t = m\Delta v

where:

F is the force exerted on the car

\Delta t is the duration of the collision

m = 1400 kg is the mass of the car

\Delta  v=-27 m/s is the change in velocity of the car

We can re-write the equation as

F=\frac{m\Delta v}{\Delta t}

In the 1st collision, the time is 1.5 seconds, so the force is

F_1=\frac{(1400)(-27)}{1.5}=-25,200 N

In the 2nd collision, the time is increased to 2.2 seconds, so the force is

F_2=\frac{(1400)(-27)}{2.2}=-17,182 N

Therefore, the force has been reduced by:

F_2-F_1=-17,182-(-25,200)=8018 N

4 0
3 years ago
Read 2 more answers
What do you think will happen to Charlie now that he is smart? Explain.
postnew [5]
.... I don’t know but, he will be able to make smarter choices, he will be able to think before he does something, honestly don’t know
7 0
3 years ago
Average speed can be represented by the mathematical expression
nevsk [136]

Average speed is defined as total distance moved in total interval of time

so it is given as

v_{avg} = \frac{distance}{time}

now here is we show distance by "d" and time by"t"

then we will have mathematical expression as follows

v = \frac{d}{t}

5 0
3 years ago
Other questions:
  • What will happen to the solar particle as the particles enter magnetosphere?​
    7·1 answer
  • The first step in the sewage-treatment process is _____.
    5·2 answers
  • Can you please help me it’s due at 11:59 please
    12·1 answer
  • Suppose that the electric field in the Earth's atmosphere is E = 8.60 101 N/C, pointing downward. Determine the electric charge
    14·1 answer
  • Drag each label to the correct location on the chart. Each label can be used more than once.
    9·1 answer
  • Which of the following describes the work done by a heat engine?
    15·1 answer
  • What is the source of gentian viole?​
    11·1 answer
  • Question 2 (5 points)
    11·1 answer
  • List out the fundamental and derived units​
    8·1 answer
  • A drawback of burning biomass to produce electricity is that it is ___.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!