If only 1 option is correct then it is (D)
All the others can also make one component negative, all depends how u measured the angle.
all the best
Answer:
180.4 m
Explanation:
The package in relation to the point where it was released falls a certain distance that is calculated by applying the horizontal motion formulas , as the horizontal speed of the plane and the height above the ground are known, the time that It takes the package to reach its destination and then the horizontal distance (x) is calculated from where it was dropped, as follows:
h = 100 m
x =?
Height formula h:
Time t is cleared:
t = 4.51 sec
Horizontal distance formula x:
x = 40 m / sec x 4.51 sec
x = 180.4 m
Answer:
Explanation:
As we projected the balloon at speed vo at an angle of 29 degree
so the two component of velocity is given as
now we know that in x direction we have
in y direction we have
now we have
Answer:
Explanation:
1. What are the forces acting on the block when it is hanging freely from the spring scale? What is the net force on the block? What are the magnitudes of each of the forces acting on the block? Explain.
When a block is hanging freely, two forces are acting on it = tension force from the spring scale and gravity force on the block itself. The net force is zero as the block is not accelerating. The magnitudes of tension and gravity force are the same but in opposite directions.
2. What are the forces that act on the block when it is placed on the ramp and is held in place by the spring scale? What is the net force acting on the block? Explain. (Assume that the ramps are frictionless surfaces.)
There are three forces acting on the block when it is placed on the ramp and is held in place by the spring scale: as in 1, there are tension and gravity but there is a third force - reaction force from the ramp surface on the block that is perpendicular to the surface. Again the block is not moving so the net force is zero.
3. What is the magnitude of normal force acting on the block when it is resting on the flat surface? How does the normal force change as the angle of the ramp increases? Explain. (Assume that the ramps are frictionless surfaces.)
On flat surface, the normal force is equal to the gravity force of the block i.e. its weight. On a vertical surface, the normal force is equal to zero. For the angle of ramp, θ, the normal force = weight * cos θ.
1 kilogram = 1,000 grams
1 kilogram = 1,000,000 milligrams