1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
9

a 0.11kg moving hockey puck is caught by a 80kg goalie who then slides on the frictionless ice at 0.076 m/s. What was the initia

l velocity of the hockey puck
Physics
1 answer:
aleksandrvk [35]3 years ago
3 0

Answer:

55mph

Explanation:

You might be interested in
If an object is thrown in an upward direction from the top of a building 160 ft. High at an initial speed of 21.82 mi/h what is
viktelen [127]
To solve this problem we are going to use tow kinematic equations for falling objects.
1. Kinematic equation for final velocity: V_{f}=V_{i}+gt
where
V_{f} is the final velocity 
V_{i} is the initial velocity 
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 
2. Kinematic equation for distance: d=V_{i}t+ \frac{1}{2} gt^2
where
d is the distance 
V_{i} is the initial velocity 
V_{f} is the final velocity
g is the acceleration due to gravity 32 \frac{ft}{s^2}
t is the time 

First, we are going to convert 21.82 mi/h to ft/s:
21.82 \frac{mi}{h} =31.21 \frac{ft}{s}

Next, we are going to use the first equation to find how long it takes for the rock to reach its maximum height.
We know for our problem that the object is thrown in upward direction, so its velocity at its maximum height (before falling again) will be zero; therefore: V_{f}=0. We also know that it initial speed is 31.21 ft/s, so V_{i}=31.21. Lets replace those values in our formula to find t:
V_{f}=V_{i}+gt
0=31.21+(-32)t
-32t=-31.21
t= \frac{-31.21}{-32}
t=0.98seconds

Next, we are going to use that time in our second kinematic equation to find the distance the object reach at its maximum height:
d=V_{i}t+ \frac{1}{2} gt^2
d=31.21(0.98)+ \frac{1}{2} (-32)(0.98)^2
d=15.22ft 

Now we can add the height of the building and the maximum height of the object:
d=160+15.22=175.22ft

Next, we are going to use that height (distance) in our second kinematic equation one more time to fin how long it takes for the object to fall from its maximum height to the ground:
d=V_{i}t+ \frac{1}{2} gt^2
175.22=31.21t+ \frac{1}{2} (32)t^2
16t^2+31.21t-175.22=0
t=2.47 or t=-4.43
Since time cannot be negative, t=2.47 is the time it takes the object to fall to the ground. 

Finally, we can use that time in our first kinematic equation to find the final speed of the object when it hits the ground:
V_{f}=V_{i}+gt
V_{f}=31.21+(32)(2.47)
V_{f}=110.25 ft/s

We can conclude that the speed of the object when it hits the ground is 110.25 ft/s


5 0
3 years ago
Calculate the equivalent of 20 degrees Celsius in degrees Fahrenheit and Kelvin.
alekssr [168]

Answer:

68 °F, 293.15 K

Explanation:

Fahrenheit, Kelvin and Celsius are the different scales of temperature in which temperature is measured.

Given : T = 20°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

<u>T = (20 + 273.15) K = 293.15 K </u>

The conversion of T( °C) to T(F) is shown below:

T (°F) = (T (°C) × 9/5) + 32

So,

<u>T (°F) = (20 × 9/5) + 32 = 68 °F</u>

3 0
3 years ago
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
3 years ago
Read 2 more answers
Suppose that you are swimming in a river while a friend watches from the shore. In calm water, you swim at a speed of 1.25 m/s .
aliya0001 [1]

Answer: The observing friend will the swimmer moving at a speed of 0.25 m/s.

Explanation:

  • Let <em>S</em> be the speed of the swimmer, given as 1.25 m/s
  • Let S_{0} be the speed of the river's current given as 1.00 m/s.

  • Note that this speed is the magnitude of the velocity which is a vector quantity.
  • The direction of the swimmer is upstream.

Hence the resultant velocity is given as, S_{R} = S — S 0S_{0}

S_{R} = 1.25 — 1

S_{R} = 0.25 m/s.

Therefore, the observing friend will see the swimmer moving at a speed of 0.25 m/s due to resistance produced by the current of the river.

6 0
3 years ago
Why heat capacity for polymer higher than metal?
jok3333 [9.3K]
Because polymers are covalently bonded material, and metals are metalicly bonded material. 

Covalent bonds do not let atoms exchange electrons like metalic bonds do.
4 0
3 years ago
Other questions:
  • A object turns about an internal axis ___ this is called
    9·2 answers
  • During a demolition derby, vehicle 1 collided vehicle 2 going in the opposite direction and came to an immediate stop. If the ve
    12·1 answer
  • Cassie lives two miles away from school. Which mode of transport could benefit her health? 
    10·2 answers
  • HELP ME PLZ!!! Two lifeguards pull on ropes attached to a
    12·1 answer
  • Compare the practical uses and limitations of nuclear fission and fusion. Include in your answer a detailed description of the t
    14·1 answer
  • The temperature rises from 25.00°C to 29.00°C in a bomb calorimeter when 3.50 g of sucrose undergoes combustion in a bomb calori
    11·1 answer
  • A cart moves along a track at a velocity of 3.5 cm/s. When a force is applied to the cart, its velocity increases to 8.2 cm/s. I
    5·1 answer
  • b) Si la distancia entre el punto A y el punto B es de 650 metros aproximadamente y la estudiante tarda 15 minutos (1200 segundo
    7·1 answer
  • What is a electric curcit
    5·2 answers
  • 17 1. Which statement about Kepler's law of harmonies is correct?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!