The answer is: " 208 g " .
_____________________________________________
Explanation:
__________________________________________
The formula/ equation for density is:
__________________________________________
D = m / V ; That is, "mass divided by volume" ;
Density is expressed as:
__________________________________________
"mass per unit volume"; in which the "mass" is expressed in units of "g" ("grams") ; and the "unit volume" is expressed in units of:
"cm³ " or "mL";
_____________________________________________
{Note the exact equivalent: 1 cm³ = 1 mL }.
____________________________________________
→ The formula is: " D = m / V " ;
___________________________________________
in which:
"D" refers to the "density" (see above), which is: "8.9 g/cm³ " (given);
"m" refers to the "mass" , in units of "g" (grams), which is unknown; and we want to find this value;
"V" refers to the "volume", in units of "cm³ " ;
which is: "23.4 cm³ " (given);
_________________________________________________
We want to find the mass, "m" ; so we take the original equation/formula for the density:
_________________________________________________
D = m / V ;
_________________________________________________________
And we rearrange; to isolate "m" (mass) on ONE side of the equation; and then we plug in our known/given values;
to solve for "m" (mass); in units of "g" (grams) ;
___________________________________________________
Multiply each side of the equation by "V" ;
____________________________________________________
V * { D = m / V } ; to get:
____________________________________________________
V * D = m ; ↔ m = V * D ;
___________________________________________________
Now, we plug in the given values for "V" (volume) and "D" (density) ; to solve for the mass, "m" ;
______________________________________________________
m = V * D ;
m = (23.4 cm³) * (8.9 g / 1 cm³) = (23.4 * 8.9) g = 208.26 g ;
→ Round to "208 g" (3 significant figures);
____________________________________
The answer is: " 208 g " .
_____________________________________________________
Answer: The wave can flip upside down.
Reflection is the bending of a wave when it cannot pass through. For example, plain mirrors which are flat, a ray of light hits the mirror and is reflected from the mirror since it cannot pass through
When reflection occurs the speed and frequency of the wave does not change but the wave is flipped upside down.
The speed does not change because speed is affected by the change in medium the frequency also remains the same since the energy of the wave does not change.
Answer: 
Explanation:
Given
Wavelength of light 
Screen is
away
Distance between two adjacent bright fringe is 
When same experiment done in water, wavelength reduce to 
So, the distance between the two adjacent bright fringe is 
Keeping other factor same, distance becomes

Answer:
electrons
Explanation:
The magnitude of the electric field outside an electrically charged sphere is given by the equation

where
k is the Coulomb's constant
Q is the charge stored on the sphere
r is the distance (from the centre of the sphere) at which the field is calculated
In this problem, the cloud is assumed to be a charged sphere, so we have:
is the maximum electric field strength tolerated by the air before breakdown occurs
is the radius of the sphere
Re-arranging the equation for Q, we find the maximum charge that can be stored on the cloud:

Assuming that the cloud is negatively charged, then

And since the charge of one electron is

The number of excess electrons on the cloud is

I don't know what this question is asking but this statement is false because venus is a planet made of hot gas that cannot be landed on. So venus has not been explored by rovers. (However Mars has been explored by rovers)