Answer:
the answer is that the dough has the same mass before and after it was flattened
All stars in a stellar cluster have roughly the same distance.
<h3>What coloration are celebrity clusters?</h3>
Open clusters have a tendency to be blue in color. They frequently include glowing gas and dust. The stars in an open cluster are young stars that all formed from the equal nebula. These warm blue stars are in an open cluster known as the Jewel Bo
<h3>Are stars in the identical cluster?</h3>
Though stellar associations are grouped in with megastar clusters, they're pretty a bit different. "Stellar associations are companies of tens to hundreds of stars that have similar a while and metallicities, and are moving in roughly the equal direction within the galaxy, but are no longer gravitationally bound," Geller said.
Learn more about star cluster here:
<h3>
brainly.com/question/20326847</h3><h3 /><h3>#SPJ4</h3>
Answer:
v = 7.67 m/s
Explanation:
Given data:
horizontal distance 11.98 m
Acceleration due to gravity 9.8 m/s^2
Assuming initial velocity is zero
we know that

solving for t
we have

substituing all value for time t

t = 1.56 s
we know that speed is given as


v = 7.67 m/s
The specific heat of a metal or any element or compound can be determined using the formula Cp = delta H / delta T / mass. delta pertains to change. That is change in enthalpy and change in temperature. From the given data, Cp is equal to 343 cal per (86-19) c per 55 grams. This is equal to 0.093 cal / g deg. Celsius