Answer:
Part a)

Part b)

Explanation:
As we know that by parallel axis theorem we will have

Part a)
here we know that for a stick the moment of inertia for an axis passing through its COM is given as

now if we need to find the inertia from its end then we will have



Part b)
here we know that for a cube the moment of inertia for an axis passing through its COM is given as

now if we need to find the inertia about an axis passing through its edge



<span>It tells how hot it really feels when the relative humidity is factored in with the actual air temperature.
hope this helps</span>
(1.00 atm) (0.1156 L) = (n) (0.08206 L atm / mol K) (273 K) I hoped that helped
Answer:
R = 710.7N
L = 67.689 N
During gravity fall L = R = 0 N
Explanation:
So the acceleration that the elevator is acting on the woman (and the package) in order to result in a net acceleration of 0.15g is
g + 0.15g = 1.15g
The force R that the elevator exerts on her feet would be product of acceleration and total mass (Newton's 2nd law):
a(m + M) = 1.15g(57 + 6) = 1.15*9.81*63 = 710.7N
The force L that she exerts on the package would be:
am = 1.15g *6 = 1.15*9.81*6 = 67.689N
When the system is falling, all have a net acceleration of g. So the acceleration that the elevator exerts on the woman (and the package) is 0, and so are the forces L and R.