No force is required to lift that balloon. In fact, force is required to hold it down, and if you let go, it's up, up, and away.
Since the balloon's density is less than the density of the air around it, it's lighter than the air it displaces, there is a net upward buoyant force acting on it, and it floats up !
<span>insulators are stored in the bonds to hold them together</span>
In projectile motion horizontal motion has zero acceleration and when there is no air resistance acting on the object the motion will be uniform. Motion in the vertical direction is accelerated downwards to to the acceleration due to gravity
Answer:
1. Distance travelled = 12 km.
2. Displacement = 8.6 km
Explanation:
From the question given above, the following data were obtained:
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance =?
Displacement =?
1. Determination of the distance travelled.
Distance 1 (d₁) = 7 km
Distance 2 (d₂) = 5 km
Total distance (dₜ) =?
dₜ = d₁ + d₂
dₜ = 7 + 5
dₜ = 12 km
2. Determination of the displacement.
In the attached photo, R is the displacement.
We can obtain the value of R by using the pythagoras theory as illustrated below:
R² = 7² + 5²
R² = 49 + 25
R² = 74
Take the square root of both side
R = √74
R = 8.6 km