Inertia. It also is the tendency of an object in motion to stay in motion in one specific direction.
Sounds like the situation is modeled like so:
[Light] - - - - - - - - - - [You] => - - -
- - - - - - - - - - - - - - - [Cop] - - - - -
<= = = 200 m = = =>
where your velocity is 27.8 m/s to the right. So the question is asking, is it possible that your car, given that it accelerates at a maximum of 1/5 m/s^2, can reach a speed of 27.8 m/s from rest in the time it takes for it to cover 200 m.
The car's position at time
is

The time it takes to traverse 200 m is

Your car's velocity at time
, starting from rest, is

so that after 16.3 s, your car is moving at a speed of

which is less than the speed the cop claims you were going, so the cop is not correct.
Option B
Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury correctly describes the usual order of planets inward toward the sun
<u>Explanation:</u>
Our solar system continues much considerably than the eight planets that revolve around the Sun. The position of the planets in the solar system, commencing inward to the sun is the accompanying: Neptune, Uranus, Saturn, Jupiter, Mars, Earth, Venus, Mercury.
Most next to the Sun, simply rocky material could resist the heat. For this logic, the first four planets: Mercury, Venus, Earth, and Mars are terrestrial planets. The four large outer worlds — Jupiter, Saturn, Uranus, and Neptune: because of their enormous size corresponding to the terrestrial planets. They're also frequently composed of gases like hydrogen, helium, and ammonia preferably than of rocky surfaces.