Answer:

Explanation:
Given that,
The mass of the paperclip, m = 1.8 g = 0.0018 kg
We need to find the energy obtained. The relation between mass and energy is given by :

Where
c is the speed of light
So,

So, the energy obtained is
.
Answer:
2000 ohms
Explanation:
Resisters in series just add.
Rt = R1 + R2 + R3
R1 = 650 ohm
R2 = 350 ohm
R3 = 1000 ohm
Rt = 650 + 350 + 1000
Rt = 2000 ohms.
Answer:
a) The speed is 61.42 m/s
b) The drag force is 10.32 N
Explanation:
a) The Reynold´s number for the model and prototype is:


Equaling both Reynold's number:

Clearing Vm:

b) The drag force is:

Answer:
The force generated by a single muscle fiber can be increased by increasing the frequency of action potentials
Explanation:
The force generated by a muscle fiber is the result of the shortening of the skeletal muscle, and this force is also know as muscle tension. The larger motor units shorten along with the smaller units to produce the muscle force. The time lapsed between the beginning of the action potential in the muscle and the beginning of the contraction is the latent period. Action potential is the result of the difference electrical potential as a result of passage of an impulse along the membrane of a muscle or nerve cell.