1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saw5 [17]
3 years ago
10

The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between

inside and outside.
(a) Under this assumption, show that the cost of operating an air con- ditioner is proportional to the square of the temperature difference.
(b) Give a numerical example for a typical house and discuss implications for your electric bill.
(c) Suppose instead that heat enters the building at a rate proportional to the square-root of the temperature difference between inside and outside. How would the operating cost now depend on the temperature difference?
Physics
1 answer:
erma4kov [3.2K]3 years ago
4 0

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

You might be interested in
Why was nuclear energy first developed?
Helga [31]

Nuclear energy was not developed.  It has existed for as long as time has existed, that is, since the big bang.

The thing that was developed was humans' ability to USE nuclear energy, to do what we want it to do, when we want it to do it.

The reason this was first developed was to bomb the holy beans out of Japan, in order to win World War II.

Today (2020), nine of the world's nations are known to have 14,285 nuclear bombs in storage, for the same general purpose.  Seven of these nations are storing 1,170 of these bombs (about 8 percent), and the USA and Russia have all the rest ... 13,035 nuclear bombs.

All nine of these nations promise that they have no plan to use their bombs, they don't want to use them, it would be wrong and terrible to use them, and they will never be the first to use them, but they need to modernize their bombs so that theirs are better than anybody else's bombs, and they need to keep their bombs for as long as anybody else has any, and then maybe a little longer, just in case.

In the years after the ability to bomb the holy beans out of other people was developed, and enough equipment was built to do it 14 thousand times, the ability to use nuclear energy for other purposes was also developed.  It's used now to generate electrical energy, and to do several jobs in Medical science.  

7 0
3 years ago
It is known that the gravitational force of attraction between two alpha particles is much weaker than the electrical repulsion.
natali 33 [55]

Answer:

<em>The ratio of gravitational force to electrical force is 3.19 x 10^-36 </em>

<em></em>

Explanation:

mass of an alpha particle = 6.64 x 10^{-27} kg

charge on an alpha particle = +2e = +2(1.6 x 10^{-19} C) = 3.2 x 10^{-19} C

distance between particles = d

For gravitational attraction:

The force of gravitational attraction F = \frac{Gm^{2} }{r^{2} }

where G = gravitational constant = 6.67 x 10^{-11} m^3 kg^-1 s^-2

r = the distance between the particles = d

m = the mass of each particle

therefore, gravitational force = \frac{6.67*10^{-11}*(6.64*10^{-27} )^{2}  }{d^{2} } = \frac{2.94*10^{-63} }{d^{2} }  Newton

For electrical repulsion:

Electrical force between the particles = \frac{-kQ^{2} }{r^{2} }

where k is the Coulomb's constant = 9.0 x 10^{9} N•m^2/C^2

r = distance between the particles = d

Q = charge on each particle

therefore, electrical force = \frac{-9*10^{9}*(3.2*10^{-19} )^{2}  }{d^{2} } = \frac{-9.216*10^{-28} }{d^{2} } Newton

the negative sign implies that there is a repulsion on the particles due to their like charges.

Ratio of the magnitude of gravitation to electrical force = \frac{2.94*10^{-63} }{9.216*10^{-28} }

==> <em>3.19 x 10^-36 </em>

8 0
3 years ago
Question 1:
german

Answer:

well I done really know ask the others person

7 0
3 years ago
A supercapacitor is an electrical energy storage device. A supercapacitor, initially charged to 2.1 thousand millivolts, supplie
svet-max [94.6K]

Answer:

the time taken t is 9.25 minutes

Explanation:

Given the data in the question;

The initial charge on the supercapacitor = 2.1 × 10³ mV = 2.1 V

now, every minute, the charge lost is 9.9 %  

so we need to find the time for which the charge drops below 800 mV or 0.8 V

to get the time, we can use the formula for compound interest in basic mathematics;

A = P × ( (1 - r/100 )ⁿ

where A IS 0.8, P is 2.1, r is 9.9

so we substitute

0.8 = 2.1 × ( 1 - 0.099 )ⁿ

0.8/2.1 = 0.901ⁿ

0.901ⁿ = 0.381

n = 9.25 minutes

Therefore, the time taken t is 9.25 minutes

6 0
3 years ago
What type of appeal does Gore mostly use to persuade the audience?
Mazyrski [523]
I thinks its He uses proof to show the evidence is relevant. But im not totally positive on it hope this helps
8 0
3 years ago
Read 2 more answers
Other questions:
  • What influences the strength of an electric field?
    8·1 answer
  • Barbara pushes her friend Sharon on a skateboard. Barbara applies a force of 225 N and Sharon's acceleration is 2.3 m/s2. What i
    7·2 answers
  • How does the brightness of a bulb tell you about the energy of electrons passing through it?
    15·1 answer
  • What potential difference is required across a 8Ω resistor to cause 2.0 A to flow through it?
    13·1 answer
  • In an element’s square on the periodic table, the number with the greatest numerical value represents the
    7·2 answers
  • In what ways are sound waves and electromagnetic waves similar? In what ways are they different?
    5·1 answer
  • The work-energy theorem states that a force acting on a particle as it moves over a ______ changes the ______ energy of the part
    8·1 answer
  • The car has a mass of 22,000Kg. Calculate the force needed to stop the car.
    7·1 answer
  • The problem of perception is best characterized as
    15·1 answer
  • Electrical force is much weaker than the force of gravity true or false. ​
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!