1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saw5 [17]
3 years ago
10

The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between

inside and outside.
(a) Under this assumption, show that the cost of operating an air con- ditioner is proportional to the square of the temperature difference.
(b) Give a numerical example for a typical house and discuss implications for your electric bill.
(c) Suppose instead that heat enters the building at a rate proportional to the square-root of the temperature difference between inside and outside. How would the operating cost now depend on the temperature difference?
Physics
1 answer:
erma4kov [3.2K]3 years ago
4 0

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

You might be interested in
two billiard balls moving along the same line hit each other head-on. each has a mass of 0.220 kg; one has an initial velocity o
Tems11 [23]

Hi there!

Since the collision is elastic, we must also satisfy the following condition:

Ei = Ef, or:

KEi = KEf

Begin by writing an expression for momentum. (p = mv) Remember that one ball's direction is negative; in this instance, we can let the second ball be moving LEFT.

mv1 + mv2 = mvf1 + mvf2

0.220(1.84) + 0.220(-.530) = 0.220(vf1 + vf2)

0.2882/0.220 = vf1 + vf2

1.31 = vf1 + vf2

Now, we can express this as a conservation of energy:

1/2mv1² + 1/2mv2² = 1/2mvf1² + 1/2mvf2²

Plug in values and simplify:

0.403315 = 1/2m(vf1² + vf2²)

Simplify further:

3.6665 = vf1² + vf2²

Use the equation derived from momentum above and solve for one variable:

vf2 = 1.31 - vf1

Plug in this expression for vf2:

3.6665 = vf1² + (1.31 - vf1)²

Expand:

3.6665 = vf1² + 1.7161 - 2.62vf1 + vf1²

Simplify:

1.9504 = -2.62vf1 + 2vf1²

Solve for vf1 using a graphing calculator:

vf1 = -0.53 m/s or 1.84 m/s; we must figure out which one is correct.

Since v1 is heading to the right initially with a velocity of 1.84 m/s, we know that the ball's velocity could not have stayed the same in both magnitude and direction, so the final velocity must be -0.53 m/s.

Now, we can solve for the velocity of the other ball (initial of 0.53 m/s):

vf2 = 1.31 - (-0.53) = 1.84 m/s.

Now, you could have also made the connection that when two balls of the SAME MASS experience an ELASTIC collision, the velocities are simply "exchanged" from one to another. I just used this more "extensive" method to prove this.

7 0
3 years ago
In your discussion entry, create and describe at least four ways to include someone of a diverse culture or ability level in a s
artcher [175]
The answer is: playing area
8 0
3 years ago
A car travels 200m in 30 s and 400m in the next 90s. Whats the average speed?
VLD [36.1K]

Answer:

300m per minute or 5m per second

6 0
3 years ago
The weight of a body is 147N. what is its mass?
barxatty [35]

<u>To find the mass, with only the weight</u>:

  ⇒ must consider the relationship between the mass and weight

     ⇒ (<em>in other words</em>) we must find the equation that has both the

         mass and weight

<u>Based on our physics knowledge, we know</u>:

 Weight=mass*gravitational_. acceleration

  • Weight: 147N
  • Gravitational Acceleration: 9.8 m/s²

<u>Now let's plug in the values, and solve</u>:

 147N = mass*9.8_.m/s^2\\mass = 15_.kg

<u>Answer: 15 kg</u>

Hope that helps!

<em>*as a note, if you use the gravitational acceleration as 10m/s², then the answer would be 14.7 kg</em>

5 0
2 years ago
Which of the following best describes a spiral galaxy?
elena55 [62]
I think the answer is c 
7 0
3 years ago
Read 2 more answers
Other questions:
  • falling objects drop with an average acceleration of 9.8m/sec/sec. if an object falls from a tall building how long will it take
    8·1 answer
  • A 0.210-kg block along a horizontal track has a speed of 1.70 m/s immediately before colliding with a light spring of force cons
    10·1 answer
  • Which type of bond (ionic, covalent, or metallic) does the phrase "opposite attract" apply to best? Explain.
    11·2 answers
  • In the reaction C + O2 → CO2, 18 g of carbon react with oxygen to produce 72 g of carbon dioxide. What mass of oxygen would be n
    15·1 answer
  • When a certain air-filled parallel-plate capacitor is connected across a battery, it acquires a charge of 200 µC on each plate.
    10·1 answer
  • A car is moving with a velocity of45m/s. Is brought to rest in 5s.the distance travelled by car before it comes to rest is
    7·1 answer
  • PLEASE I NEED HELP
    7·1 answer
  • 6. A light ray strikes a reflective plane surface at an angle of 560 with the surface.
    7·1 answer
  • A force of 10 N making an angle 30 with horizontal .its horizontal component wll be​
    10·1 answer
  • could anyone determinate the period knowing that it performs 4000 vibrations in 0.5 minutes, Sorry my english is bad
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!