Answer:
Time, t = 80 seconds
Explanation:
Given that,
The frequency of the oscillating mass, f = 1.25 Hz
Number of oscillations, n = 100
We need to find the time in which it makes 100 oscillations. We know that the frequency of an object is number of oscillations per unit time. It is given by :



t = 80 seconds
So, it will make 100 oscillations in 80 seconds. Hence, this is the required solution.
Higher pitched sounds produce waves which are closer together than for lower pitched sounds. A smaller triangle or cymbal will make a relatively higher pitch note
Answer:
Heat can travel from one place to another in three ways: Conduction, Convection and Radiation. ... Thermal energy is transferred from hot places to cold places by convection. Convection occurs when warmer areas of a liquid or gas rise to cooler areas in the liquid or gas.
Answer : The correct option is, (C) 17 m/s
Explanation :
Formula used :

where,
K.E = kinetic energy = 6.8 J
m = mass of object = 46 g = 0.046 kg (1 kg = 1000 g)
v = velocity
Now put all the given values in the above formula, we get:




Therefore, the ball's velocity be as it leaves the cannon is, 17 m/s
Answer: Take your pick
Explanation:
if they are all in parallel 1 /(1/100 + 1/300 + 1/50) = 30 Ω
if 50 is in parallel with 2 in series 1 / (1/(100 + 300) + 1/50) = 44.444...Ω
if 100 is in parallel with 2 in series 1 / (1/(50 + 300) + 1/100) = 77.777...Ω
if 300 is in parallel with 2 in series 1 / (1/(100 + 50) + 1/300) = 100 Ω
If 50 is in series with 2 in parallel 50 + 1/(1/100 + 1/300) = 125 Ω
If 100 is in series with 2 in parallel 100 + 1/(1/50 + 1/300) = 142.857...Ω
If 300 is in series with 2 in parallel 300 + 1/(1/50 + 1/100) = 333.333...Ω
If they are all in series 100 + 300 + 50 = 450 Ω