Answer:
As we keep on increasing the radius the value of the gravitation force of attraction decreases and as we decrease the radius the gravitation force increases.
Explanation:
Like the coulombs law of electrostatics, the law of gravitation also depends inversely on the square of the value of r. Therefore, as we keep on increasing the value of r the value of the gravitation force decreases and as we decrease the value of the r the value of gravitation force increases.
Gravitation Force=
Coulombs's Law= 
A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
Answer:
Option C
Explanation:
Diverging lens are negative lens as they have negative focal length. Their
magnification is smaller than one.
They produce virtual image in which the refracted rays extended back in order to meet
Hence, option C is correct
Answer:
(C) 2P
Explanation:
Ideal gas law states:
PV = nRT
n (the number of moles) and R (ideal gas constant) are constant, so we can say:
(PV / T) before = (PV / T) after
Chamber X starts at pressure P, volume V, and temperature T. At equilibrium, the pressure is Px, the volume is Vx, and temperature 3T.
PV / T = Px Vx / 3T
Chamber Y starts at pressure P, volume V, and temperature T. At equilibrium, the pressure is Py, the volume is Vy, and temperature T.
PV / T = Py Vy / T
Substituting and simplifying:
Px Vx / 3T = Py Vy / T
Px Vx / 3 = Py Vy
Since the chambers are at equilibrium, Px = Py:
Vx / 3 = Vy
Vx = 3 Vy
The total volume is the same as before, so:
Vx + Vy = 2V
Substituting:
(3 Vy) + Vy = 2V
4 Vy = 2V
Vy = V / 2
Now if we substitute into our equation for chamber Y:
PV / T = Py (V/2) / T
PV = Py (V/2)
Py = 2P
The pressure in chamber Y (and chamber X) doubles at equilibrium.