Answer:
h' = 603.08 m
Explanation:
First, we will calculate the initial velocity of the pellet on the surface of Earth by using third equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity on the surface of earth = - 9.8 m/s² (negative sign due to upward motion)
h = height of pellet = 100 m
Vf = final velocity of pellet = 0 m/s (since, pellet will momentarily stop at highest point)
Vi = Initial Velocity of Pellet = ?
Therefore,
(2)(-9.8 m/s²)(100 m) = (0 m/s)² - Vi²
Vi = √(1960 m²/s²)
Vi = 44.27 m/s
Now, we use this equation at the surface of moon with same initial velocity:
2g'h' = Vf² - Vi²
where,
g' = acceleration due to gravity on the surface of moon = 1.625 m/s²
h' = maximum height gained by pellet on moon = ?
Therefore,
2(1.625 m/s²)h' = (44.27 m/s)² - (0 m/s)²
h' = (1960 m²/s²)/(3.25 m/s²)
<u>h' = 603.08 m</u>
Answer:
Manganese oxide prevents polarisation in dry cells. - Polarization is a defect that occurs in simple electric cells due to the accumulation of hydrogen gas around the positive electrode. ... - MnO2 reacts with H2 and forms water as byproduct, so depolarization doesn't occur.
A and B are equivalent. That's one way instruments are often grouped. (the "sopranos", the "altos", the "bass")
C is another way instruments are often grouped; (the "woods", the "brass")
D is another way instruments are often grouped; (the "strings", the "percussions")
The answer to this is B, C, and D. hope this helped