Which of the following is NOT a factor in efficiency?<span><span>A.metabolism</span><span>B.type of movement</span><span>C.muscle efficiency</span><span>D.digestion</span></span>
Answer:
She is likely to crash because her flight gradient is lesser than the flight gradient required gradient to avoid crashing
Explanation:
The given parameters are;
The required gradient of the plane Ashley is flying needs to reach in order to take off and not crash = 360 m/km
The initial elevation of the plane Ashley is flying = Sea level = 0 m
The goal Ashley intends to make = Elevation of 1000 m at 2.8 km. distance
∴ Ashley's goal = Traveling from sea level to 1000 m at 2.8 km horizontal distance
We have;
The gradient = Rate of change of elevation/(Horizontal distance)
Therefore;
The gradient of Ashley's flight = (1000 - 0)/(2.8 - 0) = 357.143 m/km
The gradient of Ashley's flight ≈ 357.143 m/km which is lesser than the required 360 m/km in order to take off and not crash, therefore, she will crash.
<span>won
adjective
Verb phrases are verbs that may function as a predicate, adjective, or adverb. </span>
(a) "That he said" is an adjective modifying "word". However, this contains the s ubject"he" and the verb "said". It is a clause and NOT a phrase. Phrases can only have either a verb or a noun.
<span>(b) There's only one verb "was" but it does not come with a complement, object, modifier, or other verb. Hence, it's NOT a verb phrase. </span>
<span>(c) "Shall be" consists of the modal shall and the be-verb be. This is a perfect example of a verb phrase that functions as a VERB PHRASE. </span>
<span>(d) "Roared" and "charged" are two verbs referring to different subjects. They do not come with a complement, object, modifier, or another verb. Hence, they're NOT a verb phrase. "As the bull charged" is a clause and not a phrase.</span>
Answer:
Light wave is an EM wave that can only be seen by humans New questions in Physics Engineers at the Space Centre must determine the net force needed for a rockets engine to achieve an acceleration of 70 m/s2.
Explanation: