Answer:
acute
Step-by-step explanation:
Answer:37
Step-by-step explanation:
Complete Question
The Brown's Ferry incident of 1975 focused national attention on the ever-present danger of fires breaking out in nuclear power plants. The Nuclear Regulatory Commission has estimated that with present technology there will be on average, one fire for every 10 years for a reactor. Suppose that a certain state has two reactors on line in 2020 and they behave independently of one another. Assuming the incident of fires for individual reactors can be described by a Poisson distribution, what is the probability that by 2030 at least two fires will have occurred at these reactors?
Answer:
The value is
Step-by-step explanation:
From the question we are told that
The rate at which fire breaks out every 10 years is
Generally the probability distribution function for Poisson distribution is mathematically represented as
Here x represent the number of state which is 2 i.e
Generally the probability that by 2030 at least two fires will have occurred at these reactors is mathematically represented as
=>
=>
=>
=>
=>
Answer:
11.C
12.B
Step by step explanation:
Answer:
Area of remaining cardboard is 224y^2 cm^2
a + b = 226
Step-by-step explanation:
The complete and correct question is;
A rectangular piece of cardboard is 16y cm long and 23y cm wide. Four square pieces of cardboard whose sides are 6y cm each are cut away from the corners. Find the area of the remaining cardboard. Express your answer in terms of y. If your answer is ay^b, then what is a+b?
Solution;
Mathematically, at any point in time
Area of the cardboard is length * width
Here, area of the total cardboard is 16y * 23y = 368y^2 cm^2
Area of the cuts;
= 4 * (6y)^2 = 4 * 36y^2 = 144y^2
The area of the remaining cardboard will be :
368y^2-144y^2
= 224y^2
Compare this with;
ay^b
a = 224, and b = 2
a + b = 224 + 2 = 226