Answer:
Negotiated speed should be lower. Perception/reaction time is too less than design values.
Explanation:
Given:
- The claimed safe speed V_1 = 65 mi/h
- Sight distance D = 510 ft
- The practical deceleration a = 11.2 ft/s ... according to standards
Find:
Assuming practical stopping distance, comment on the student whether the claim is correct or not
Solution:
- Calculate the practical stopping distance:
d = V_1^2 / 2*a
d = ( 65 * 1.46 )^2 / 2*11.2 = 402.054 ft
- Solve for reaction distance d_r is as follows:
d_r = D - d = 510 - 402.054 = 107.945 ft
- The perception/time reaction is:
t_r = d_r/V_1 = 107.945 / 94.9
t_r = 1.17 sec
Answer: The perception/reaction time t_r = 1.17 s is well below the t = 2.3 s.
Hence, the safe speed should be lower.
Answer:
bypassed fraction B will be B= 0.105 (10.5%)
Explanation:
doing a mass balance of SO₂ at the exit
total mass outflow of SO₂ = remaining SO₂ from the scrubber outflow + bypass stream of SO₂
F*(1-er) = Fs*(1-es) + Fb
where
er= required efficiency
es= scrubber efficiency
Fs and Fb = total mass inflow of SO₂ to the scrubber and to the bypass respectively
F= total mass inflow of SO₂
and from a mass balance at the inlet
F= Fs+ Fb
therefore the bypassed fraction B=Fb/F is
F*(1-er) = Fs*(1-es) + Fb
1-er= (1-B)*(1-es) +B
1-er = 1-es - (1-es)*B + B
(es-er) = es*B
B= (es-er)/es = 1- er/es
replacing values
B= 1- er/es=1-0.85/0.95 = 2/19 = 0.105 (10.5%)
Answer:
Codes for each of the problems are explained below
Explanation:
PROBLEM 1 IN C++:
#include<iostream>
using namespace std;
//fib function that calculate nth integer of the fibonacci sequence.
void fib(int n){
// l and r inital fibonacci values for n=1 and n=2;
int l=1,r=1,c;
//if n==1 or n==2 then print 1.
if(n==1 || n==2){
cout << 1;
return;
}
//for loop runs n-2 times and calculates nth integer of fibonacci sequence.
for(int i=0;i<n-2;i++){
c=l+r;
l=r;
r=c;
cout << "(" << i << "," << c << ") ";
}
//prints nth integer of the fibonacci sequence stored in c.
cout << "\n" << c;
}
int main(){
int n; //declared variable n
cin >> n; //inputs n to find nth integer of the fibonacci sequence.
fib(n);//calls function fib to calculate and print fibonacci number.
}
PROBLEM 2 IN PYTHON:
def fib(n):
print("fib({})".format(n), end=' ')
if n <= 1:
return n
else:
return fib(n - 1) + fib(n - 2)
if __name__ == '__main__':
n = int(input())
result = fib(n)
print()
print(result)