1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liberstina [14]
3 years ago
12

A manometer containing a fluid with a density of 60 lbm/ft3 is attached to a tank filled with air. If the gage pressure of the a

ir in the tank is 9.4 psig and the atmospheric pressure is 12.5 psia, the fluid-level difference between the two columns, h, in feet is

Engineering
1 answer:
8090 [49]3 years ago
5 0

Answer:

The fluid level difference in the manometer arm = 22.56 ft.

Explanation:

Assumption: The fluid in the manometer is incompressible, that is, its density is constant.

The fluid level difference between the two arms of the manometer gives the gage pressure of the air in the tank.

And P(gage) = ρgh

ρ = density of the manometer fluid = 60 lbm/ft³

g = acceleration due to gravity = 32.2 ft/s²

ρg = 60 × 32.2 = 1932 lbm/ft²s²

ρg = 1932 lbm/ft²s² × 1lbf.s²/32.2lbm.ft = 60 lbf/ft³

h = fluid level difference between the two arms of the manometer = ?

P(gage) = 9.4 psig = 9.4 × 144 = 1353.6 lbf/ft²

1353.6 = ρg × h = 60 lbf/ft³ × h

h = 1353.6/60 = 22.56 ft

A diagrammatic representation of this setup is presented in the attached image.

Hope this helps!

You might be interested in
Which of the following is NOT true concerning the color of minerals? A. Some minerals have a consistent color, but many have a r
mixer [17]

Answer:

Option D

A mineral’s color reflects the wavelengths of light that are absorbed by the mineral.

Explanation:

Color is one of the physical properties of minerals. Many minerals have a wide range of colors but there are some minerals with one consistent color and such minerals are referred as monochromatic minerals for example azurite. Normally, the streak color tends to be less variable than the color of the whole mineral and impurities or minor chemical components in a mineral react and often control the display color of resultant mineral. Option D is incorrect since mineral's color don't reflect wavelengths of light absorbed by such minerals.

5 0
3 years ago
A Rankine steam power plant is considered. Saturated water vapor enters a turbine at 8 MPa and exits at condenser at 10 kPa. The
Ray Of Light [21]

Answer:

0.31

126.23 kg/s

Explanation:

Given:-

- Fluid: Water

- Turbine: P3 = 8MPa , P4 = 10 KPa , nt = 85%

- Pump: Isentropic

- Net cycle-work output, Wnet = 100 MW

Find:-

- The thermal efficiency of the cycle

- The mass flow rate of steam

Solution:-

- The best way to deal with questions related to power cycles is to determine the process and write down the requisite properties of the fluid at each state.

First process: Isentropic compression by pump

       P1 = P4 = 10 KPa ( condenser and pump inlet is usually equal )

      h1 = h-P1 = 191.81 KJ/kg ( saturated liquid assumption )

       s1 = s-P1 = 0.6492 KJ/kg.K

       v1 = v-P1 = 0.001010 m^3 / kg

       

       P2 = P3 = 8 MPa( Boiler pressure - Turbine inlet )

       s2 = s1 = 0.6492 KJ/kg.K   .... ( compressed liquid )

- To determine the ( h2 ) at state point 2 : Pump exit. We need to determine the wok-done by pump on the water ( Wp ). So from work-done principle we have:

   

                           w_p = v_1*( P_2 - P_1 )\\\\w_p = 0.001010*( 8000 - 10 )\\\\w_p = 8.0699 \frac{KJ}{kg}

- From the following relation we can determine ( h2 ) as follows:

                          h2 = h1 + wp

                          h2 = 191.81 + 8.0699

                          h2 = 199.88 KJ/kg

                           

Second Process: Boiler supplies heat to the fluid and vaporize

- We have already evaluated the inlet fluid properties to the boiler ( pump exit property ).

- To determine the exit property of the fluid when the fluid is vaporized to steam in boiler ( super-heated phase ).

              P3 = 8 MPa

              T3 = ?  ( assume fluid exist in the saturated vapor phase )

              h3 = hg-P3 = 2758.7 KJ/kg

              s3 = sg-P3 = 5.7450 KJ/kg.K

- The amount of heat supplied by the boiler per kg of fluid to the water stream. ( qs ) is determined using the state points 2 and 3 as follows:

                          q_s = h_3 - h_2\\\\q_s = 2758.7 -199.88\\\\q_s = 2558.82 \frac{KJ}{kg}

Third Process: The expansion ( actual case ). Turbine isentropic efficiency ( nt ).

- The saturated vapor steam is expanded by the turbine to the condenser pressure. The turbine inlet pressure conditions are similar to the boiler conditions.

- Under the isentropic conditions the steam exits the turbine at the following conditions:

             P4 = 10 KPa

             s4 = s3 = 5.7450 KJ/kg.K ... ( liquid - vapor mixture phase )

             

- Compute the quality of the mixture at condenser inlet by the following relation:

                           x = \frac{s_4 - s_f}{s_f_g} \\\\x = \frac{5.745- 0.6492}{7.4996} \\\\x = 0.67947

- Determine the isentropic ( h4s ) at this state as follows:

                          h_4_s = h_f + x*h_f_g\\\\h_4_s = 191.81 + 0.67947*2392.1\\\\h_4_s = 1817.170187 \frac{KJ}{kg}        

- Since, we know that the turbine is not 100% isentropic. We will use the working efficiency and determine the actual ( h4 ) at the condenser inlet state:

                         h4 = h_3 - n_t*(h_3 - h_4_s ) \\\\h4 = 2758.7 - 0.85*(2758.7 - 181.170187 ) \\\\h4 = 1958.39965 \frac{KJ}{kg} \\

- We can now compute the work-produced ( wt ) due to the expansion of steam in turbine.

                        w_t = h_3 - h_4\\\\w_t = 2758.7-1958.39965\\\\w_t = 800.30034 \frac{KJ}{kg}

- The net power out-put from the plant is derived from the net work produced by the compression and expansion process in pump and turbine, respectively.

                       W_n_e_t = flow(m) * ( w_t - w_p )\\\\flow ( m ) = \frac{W_n_e_t}{w_t - w_p} \\\\flow ( m ) = \frac{100000}{800.30034-8.0699} \\\\flow ( m ) = 126.23 \frac{kg}{s}

Answer: The mass flow rate of the steam would be 126.23 kg/s

- The thermal efficiency of the cycle ( nth ) is defined as the ratio of net work produced by the cycle ( Wnet ) and the heat supplied by the boiler to the water ( Qs ):

                        n_t_h = \frac{W_n_e_t}{flow(m)*q_s} \\\\n_t_h = \frac{100000}{126.23*2558.82} \\\\n_t_h = 0.31

Answer: The thermal efficiency of the cycle is 0.31

       

   

7 0
3 years ago
Indicates the design of the building and<br> adjoining areas
Lelu [443]

Answer:

Architectural Plan

Explanation:

4 0
3 years ago
A well-insulated, rigid tank has a volume of 1 m3and is initially evacuated. A valve is opened,and the surrounding air enters at
DiKsa [7]

Answer:

0.5 kW

Explanation:

The given parameters are;

Volume of tank = 1 m³

Pressure of air entering tank = 1 bar

Temperature of air = 27°C = 300.15 K

Temperature after heating  = 477 °C = 750.15 K

V₂ = 1 m³

P₁V₁/T₁ = P₂V₂/T₂

P₁ = P₂

V₁ = T₁×V₂/T₂ = 300.15 * 1 /750.15 = 0.4 m³

dQ = m \times c_p \times (T_2 -T_1)

For ideal gas, c_p = 5/2×R = 5/2*0.287 = 0.7175 kJ

PV = NKT

N = PV/(KT) = 100000×1/(750.15×1.38×10⁻²³)

N = 9.66×10²⁴

Number of moles of air = 9.66×10²⁴/(6.02×10²³) = 16.05 moles

The average mass of one mole of air = 28.8 g

Therefore, the total mass = 28.8*16.05 = 462.135 g = 0.46 kg

∴ dQ = 0.46*0.7175*(750.15 - 300.15) = 149.211 kJ

The power input required = The rate of heat transfer = 149.211/(60*5)

The power input required = 0.49737 kW ≈ 0.5 kW.

3 0
3 years ago
A boiler is used to heat steam at a brewery to be used in various applications such as heating water to brew the beer and saniti
Natalija [7]

Answer:

net boiler heat = 301.94 kW

Explanation:

given data

saturated steam = 6.0 bars

temperature = 18°C

flow rate = 115 m³/h = 0.03194 m³/s

heat use by boiler = 90 %

to find out

rate of heat does the boiler output

solution

we can say saturated steam is produce at 6 bar from liquid water 18°C

we know at 6 bar from steam table

hg = 2756 kJ/kg

and

enthalpy of water at 18°C

hf = 75.64 kJ/kg

so heat required for 1 kg is

=hg - hf

= 2680.36 kJ/kg

and

from steam table specific volume of saturated steam at 6 bar is 0.315 m³/kg

so here mass flow rate is

mass flow rate = \frac{0.03194}{0.315}

mass flow rate m = 0.10139 kg/s

so heat required is

H = h × m  

here h is heat required and m is mass flow rate

H = 2680.36  × 0.10139

H =  271.75 kJ/s = 271.75 kW

now 90 % of boiler heat is used for generate saturated stream

so net boiler heat = \frac{H}{0.90}

net boiler heat = \frac{271.75}{0.90}

net boiler heat = 301.94 kW

5 0
3 years ago
Other questions:
  • Admission to an aquarium is $14 per person. There is also an IMAX theatre in the building, which charges $8 per ticket for a 3D
    8·1 answer
  • g A 30-m-diameter sedimentation basin has an average water depth of 3.0 m. It is treating 0.3 m3/s wastewater flow. Compute over
    8·1 answer
  • How should employees talk to clients)
    9·1 answer
  • Consider a very long, cylindrical fin. The temperature of the fin at the tip and base are 25 °C and 50 °C, respectively. The dia
    14·1 answer
  • Might give brainliest
    8·1 answer
  • Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 3.333 second
    11·1 answer
  • Determine if the fluid is satisfied​
    10·1 answer
  • TWO SENTENCES!!! What is something that you have used today that was designed by an engineer? What parts were designed by an eng
    11·2 answers
  • ¿Cuál es el objetivo de la participación del gobierno en la economía?
    6·1 answer
  • For installations where the nonlinear load is huge, most consulting engineers will specify ____-rated transformers.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!