Answer:
A.
Explanation:
The lower the pH the greater the concentration of H+ ions. Hydrochloric acid with a pH of 1 is a strong acid and is highly ionised in solution. It has the most H+ ions
<h3>
Answer:</h3>
43.27 g Mg
<h3>
Explanation:</h3>
The balanced equation for the reaction between magnesium metal and hydrochloric acid is;
Mg(s) + 2HCl(aq) → MgCl₂(aq) + H₂(g)
From the equation;
1 mole of magnesium reacts with 2 moles of HCl
We are given;
3.56 moles of Mg and 3.56 moles of HCl
Using the mole ratio;
3.56 moles of Mg would react with 7.12 moles of HCl, and
3.56 moles of HCl would react with 1.78 moles of Mg
Therefore;
The amount of magnesium was in excess;
Moles of Mg left = 3.56 moles - 1.78 moles
= 1.78 moles
But; 1 mole of Mg = 24.305 g/mol
Therefore;
Mass of magnesium left = 1.78 moles × 24.305 g/mol
= 43.2629 g
= 43.27 g
Thus, the mass of magnesium that remained after the reaction is 43.27 g
we have to know the spin of valence electrons of carbon-14
There are four unpaired electron which are called as valence electron also.The spin of the four unpaired electron is either upfilled or down filled.
The ground state electronic configuration of C-atom is 1s²2s²2p² and one electron from 2s orbital gets excited to 2p orbital. The elctronic configuration in excited state is 1s²2s¹
.
The electron jumps because half-filled orbitals are more stable. Exchange energy is less than pairing energy.
Regenerating is the answer
Answer: Rutherford.
Explanation:
It was the scientist Ernest Rutherford who, by 1911, performed the gold foil experiment in which α particles were shoot to a thin foild of gold.
That experiment showed that although most α particles passed through the thin gold foild, some of them were deviated in small angles and some other were bounced backward.
The conclusion of the experiment was that the atom contained a small dense positively charged nucleous and negative particles (electrons) surroundiing the nucleous. Being the space in between the nucleous and the electrons empty.
Before Rutherford's experiment the model of the atom was that of the plum pudding presented by J.J Thomson, in which the atom was a solid positively charged sphere with embeded negative charge uniformly distributed in it.