By using the ICE table :
initial 0.2 M 0 0
change -X + X +X
Equ (0.2 -X) X X
when Ka = (X) (X) / (0.2-X)
so by substitution:
4.9x10^-10 = X^2 / (0.2-X) by solving this equation for X
∴X ≈ 10^-6
∴[HCN] = 10^-6
and PH = -㏒[H+]
= -㏒ 10^-6
= 6
From electronic configuration valence electron of Nitrogen is 5, oxygen 6x2 which 12 since it involve two molecules , that of is frulorine is 7, and that No2F is 24 which is gotten form adding (5,12,7 ).All resonance structure are as follows
F
.. I ..
: O : N :O:
..
OR : F:
I
N .. : F:
/ \ or I
.. .. N
:O : :O: / / \\
/ / \\
:O : : O:
when carbon dioxide gas is collected down ward of water wet gas is collected by the downward displacement of water . This is used for gases that are not very soluble in water . ... In water , carbon dioxide produces a weakly acidic solution , carbonic acid .
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>
Answer:
If there reacted 1.5 moles of O2, there will be produced 1.0 mol of Fe2O3
Explanation:
Step 1: Data given
Number of moles oxygen reacted = 1.5 moles
Step 2: The balanced equation
4Fe + 3O2 → 2Fe2O3
Step 3: Calculate moles of Fe2O3
For 4 moles Fe consumed, we need 3 moles of O2 to produce 2 moles of Fe2O3
For 1.5 moles O2 consumed, we'll have 2/3 * 1.5 = 1.0 mol of Fe2O3
If there reacted 1.5 moles of O2, there will be produced 1.0 mol of Fe2O3