for this to be a growth function it has to be any number that is latger than zero
FOR EXAMPLE :-
50% which equals to 0.5
Answer:
The maximum volume of the open box is 24.26 cm³
Step-by-step explanation:
The volume of the box is given as
, where
and
.
Expand the function to obtain:

Differentiate wrt x to obtain:

To find the point where the maximum value occurs, we solve



Discard x=3.54 because it is not within the given domain.
Apply the second derivative test to confirm the maximum critical point.
, 
This means the maximum volume occurs at
.
Substitute
into
to get the maximum volume.

The maximum volume of the open box is 24.26 cm³
See attachment for graph.
Answer:
The no. of student failed is 36.
Step-by-step explanation:
Given, the number of student enrolled= 216
Let us suppose number of student failed = x
Given,
no. of student passed is 5 times no. of student failed.
Then, no. of student passed = 5x
x +5x = 216
6x = 216
x = 216/6
x = 36
Thus, the no. of student failed is 36.
Answer: -5100
<u>Step-by-step explanation:</u>
![\sum^4_1[100(-4)^{n-1}]\qquad \rightarrow \qquad a_1=100\ \text{and r = -4}\\\\\\S_n=\dfrac{a_1(1-r^n)}{1-r}\\\\\\\\S_4=\dfrac{100(1-(-4)^4)}{1-(-4)}\\\\\\.\quad=\dfrac{100(1-256)}{1+4}\\\\\\.\quad=\dfrac{100(-255)}{5}\\\\.\quad=20(-255)\\\\.\quad=-5100\\](https://tex.z-dn.net/?f=%5Csum%5E4_1%5B100%28-4%29%5E%7Bn-1%7D%5D%5Cqquad%20%5Crightarrow%20%5Cqquad%20a_1%3D100%5C%20%5Ctext%7Band%20r%20%3D%20-4%7D%5C%5C%5C%5C%5C%5CS_n%3D%5Cdfrac%7Ba_1%281-r%5En%29%7D%7B1-r%7D%5C%5C%5C%5C%5C%5C%5C%5CS_4%3D%5Cdfrac%7B100%281-%28-4%29%5E4%29%7D%7B1-%28-4%29%7D%5C%5C%5C%5C%5C%5C.%5Cquad%3D%5Cdfrac%7B100%281-256%29%7D%7B1%2B4%7D%5C%5C%5C%5C%5C%5C.%5Cquad%3D%5Cdfrac%7B100%28-255%29%7D%7B5%7D%5C%5C%5C%5C.%5Cquad%3D20%28-255%29%5C%5C%5C%5C.%5Cquad%3D-5100%5C%5C)
Answer:
Step-by-step explanation:
x is the amount of hours it will take. Since he pays $30 per hour, your answer would be 30x + 525