Answer:
Molarity of the sodium hydroxide solution is 1.443 M/L
Explanation:
Given;
0.60 M concentration of NaOH contains 2.0 L
3.0 M concentration of NaOH contains 495 mL
Molarity is given as concentration of the solute per liters of the solvent.
If the volumes of the two solutions are additive, then;
the total volume of NaOH = 2 L + 0.495 L = 2.495 L
the total concentration of NaOH = 0.6 M + 3.0 M = 3.6 M
Molarity of NaOH solution = 3.6 / 2.495
Molarity of NaOH solution = 1.443 M/L
Therefore, molarity of the sodium hydroxide solution is 1.443 M/L
Gin is uniform throughout and is a homogenous mixture. If it wasn't you would have awful lumps in your drink :). Hope I helped!
If we fertilize a plant, then its height increases fast. Always use if then format
Answer:
So, you're dealing with a sample of cobalt-60. You know that cobalt-60 has a nuclear half-life of
5.30
years, and are interested in finding how many grams of the sample would remain after
1.00
year and
10.0
years, respectively.
A radioactive isotope's half-life tells you how much time is needed for an initial sample to be halved.
If you start with an initial sample
A
0
, then you can say that you will be left with
A
0
2
→
after one half-life passes;
A
0
2
⋅
1
2
=
A
0
4
→
after two half-lives pass;
A
0
4
⋅
1
2
=
A
0
8
→
after three half-lives pass;
A
0
8
⋅
1
2
=
A
0
16
→
after four half-lives pass;
⋮
Explanation:
now i know the answer
Answer:
151.4863 years
Explanation:
Half life, t1/2 = 100 years
Initial concentration,[A]o = 100%
Final concentration, [A] = 35% (after 65% have been decayed)
Time = ?
Half life for a first Order reaction is given as;
t1/2 = ln (2) / k
k = ln(2) / 100
k = 0.00693y-1
The integral rate law for first order reactions is given as;
ln[A] = ln[A]o − kt
kt = ln[A]o - ln[A]
t = ( ln[A]o - ln[A]) / k
t = [ln(100) - ln(35)] /0.00693
t = 1.0498 / 0.00693
t = 151.4863 years