Answer:
The answer to your question is:
1.- CO
2.- 0.414 moles of CO2
Explanation:
Data
2CO + O2 ⇒ 2CO2
CO = 0.414 moles
O2 = 0.418
Process
theoretical ratio CO/O2 = 2/1 = 1
experimental ratio CO/O2 = 0.414/0.418 = 0.99
Then the limiting reactant is CO
2.-
2 moles of CO --------------- 2 moles of CO2
0.414 moles of CO --------- x
x = (0.414 x 2) / 2
x = 0.414 moles of CO2
"The other halogens are not as electronegative and so other hydrogen halides cannot form hydrogen bonds between molecules. Only London Forces are formed. - Therefore more energy is required to break the intermolecular forces in HF than the other hydrogen halides and so it has a higher boiling point."
not a hack link, just stating where i got your answer from! -
https://www.mytutor.co.uk/answers/17558/A-Level/Chemistry/Explain-the-unusually-high-boiling-point-of-HF/
Answer:
the correct answer is option 'b': More than
Explanation:
The 2 situations are represented in the attached figures below
When an object is placed in air it is acted upon by force of gravity of earth which is measured as weight of the object.
While as when any object is submerged partially or completely in any fluid the fluid exerts a force in upward direction and this force is known as force of buoyancy and it's magnitude is given by Archimedes law as equal to the weight of the fluid that the body displaces, hence the effective force in the downward direction direction thus the apparent weight of the object in water decreases.
A) eventually they will be in thermal equilibrium