Answer:
(C) The frequency decrease and intensity decrease
Explanation:
The Doppler effect describes the change in frequency or wavelength of a wave in relation to an observer who is moving relative to the wave source, or the wave source is moving relative to the observer, or both.
if the observer and the source move away from each other as is the case for this problem, the wavelength heard by the observer is bigger.
The frequency is the inverse from the wavelength, so the frequency heard will increase.
The sound intensity depends inversely on the area in which the sound propagates. When the buzzer is close, the area is from a small sphere, but as the buzzer moves further away, the wave area will be from a larger sphere and therefore the intensity will decrease.
To develop this problem we will apply the concept of energy conservation. For which the work carried out must be equivalent to the potential energy stored on the capacitor. We will start by finding the capacitance to later be able to calculate the energy and therefore the work in the capacitor

Here,
C = Capacitance
V = Potential difference between the plates
Q = Charge between the capacitor plates
At the same time the energy stored in the capacitor can be defined as,

We will start by finding the value of the capacitance, so we will have to,


Finally using the expression for the energy we have that,



Therefore the minimum amount of work that must be done in charging this capacitor is 
The Milky Way is a spiral and most smaller galaxies are large clouds. We also have a supermassive black hole in our core, most spiral galaxies have one.
(a) 
For an electromagnetic wave incident on a surface, the radiation pressure is given by (assuming all the radiation is absorbed)

where
I is the intensity
c is the speed of light
In this problem,
; substituting this value, we find the radiation pressure:

the force exerted on the Earth depends on the surface considered. Assuming that the sunlight hits half of the Earth's surface (the half illuminated by the Sun), we have to consider the area of a hemisphere, which is

where

is the Earth's radius. Substituting,

And so the force exerted by the sunlight is

(b) 
The gravitational force exerted by the Sun on the Earth is

where
G is the gravitational constant
is the Sun's mass
is the Earth's mass
is the distance between the Sun and the Earth
Substituting,

And so, the radiation pressure force on Earth as a fraction of the sun's gravitational force on Earth is

The other 4 kg may have left the scene in the form of
gases and smoke particles.