1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
3 years ago
13

How much energy will an electron gain if it moves through a potential difference of 1.0 V?

Physics
1 answer:
Setler [38]3 years ago
6 0

Answer:

a. 1.0 eV

Explanation:

Given that

Voltage difference ,ΔV = 1 V

From work power energy

Work =Change in the kinetic energy

We know that work on the charge W= q ΔV

For electron ,e= 1.6 x 10⁻¹⁹ C

q=e= 1 x 1.6 x 10⁻¹⁹ C

Change in the kinetic energy

ΔKE= q ΔV

Now by putting the values

ΔKE=  1 x 1.6 x 10⁻¹⁹   x 1   C.V

We can also say that

ΔKE=  1 e.V

Therefore the answer will be a.

a). 1.0 eV

You might be interested in
What mass of water must evaporate from the skin of a 70.0 kg man to cool his body 1.00 ∘C? The heat of vaporization of water at
romanna [79]

Answer:

100 cc

Explanation:

Heat released in cooling human body by t degree

= mass of the body x specific heat of the body x t

Substituting the data given

Heat released by the body

= 70 x 3480 x 1

= 243600 J

Mass of water to be evaporated

= 243600 / latent heat of vaporization of water

= 243600 / 2420000

= .1 kg

= 100 g

volume of water

= mass / density

= 100 / 1

100 cc

1 / 10 litres.

6 0
3 years ago
Planet 1 orbits Star 1 and Planet 2 orbits Star 2 in circular orbits of the same radius. However, the orbital period of Planet 1
hichkok12 [17]

Answer:

The mass of Star 2 is Greater than the mass of Start 1. (This, if we suppose the masses of the planets are much smaller than the masses of the stars)

Explanation:

First of all, let's draw a free body diagram of a planet orbiting a star. (See attached picture).

From the free body diagram we can build an equation with the sum of forces between the start and the planet.

\sum F=ma

We know that the force between two bodies due to gravity is given by the following equation:

F_{g} = G\frac{m_{1}m_{2}}{r^{2}}

in this case we will call:

M= mass of the star

m= mass of the planet

r = distance between the star and the planet

G= constant of gravitation.

so:

F_{g} =G\frac{Mm}{r^{2}}

Also, if the planet describes a circular orbit, the centripetal force is given by the following equation:

F_{c}=ma_{c}

where the centripetal acceleration is given by:

a_{c}=\omega ^{2}r

where

\omega = \frac{2\pi}{T}

Where T is the period, and \omega is the angular speed of the planet, so:

a_{c} = ( \frac{2\pi}{T})^{2}r

or:

a_{c}=\frac{4\pi^{2}r}{T^{2}}

so:

F_{c}=m(\frac{4\pi^{2}r}{T^{2}})

so now we can do the sum of forces:

\sum F=ma

F_{g}=ma_{c}

G\frac{Mm}{r^{2}}=m(\frac{4\pi^{2}r}{T^{2}})

in this case we can get rid of the mass of the planet, so we get:

G\frac{M}{r^{2}}=(\frac{4\pi^{2}r}{T^{2}})

we can now solve this for T^{2} so we get:

T^{2} = \frac{4\pi ^{2}r^{3}}{GM}

We could take the square root to both sides of the equation but that would not be necessary. Now, the problem tells us that the period of planet 1 is longer than the period of planet 2, so we can build the following inequality:

T_{1}^{2}>T_{2}^{2}

So let's see what's going on there, we'll call:

M_{1}= mass of Star 1

M_{2}= mass of Star 2

So:

\frac{4\pi^{2}r^{3}}{GM_{1}}>\frac{4\pi^{2}r^{3}}{GM_{2}}

we can get rid of all the constants so we end up with:

\frac{1}{M_{1}}>\frac{1}{M_{2}}

and let's flip the inequality, so we get:

M_{2}>M_{1}

This means that for the period of planet 1 to be longer than the period of planet 2, we need the mass of star 2 to be greater than the mass of star 1. This makes sense because the greater the mass of the star is, the greater the force it applies on the planet is. The greater the force, the faster the planet should go so it stays in orbit. The faster the planet moves, the smaller the period is. In this case, planet 2 is moving faster, therefore it's period is shorter.

6 0
3 years ago
When gases, liquids, or solids are in contact with a moving object, the flow of _____ occurs due to frictional forces
mariarad [96]
When gases, fluids, or other solids are in contact with a moving object

heat is produced due to friction.

7 0
4 years ago
Read 2 more answers
Which one is the answer please
Mila [183]
Copper is the best material
7 0
3 years ago
26. An ice-skater who weighs 200 N is gliding across the ice. If the force of friction is 4 N. what is the
Scrat [10]

Answer:

0.02

Explanation:

coefficient of kinetic friction = μ

force of friction = Ff

Normal Force = FN, but

FN = -W

Ff = -μFN

so μ = Ff/FN

= 4N/200N

= 0.02.

7 0
4 years ago
Other questions:
  • Which statements describe diffraction? Check all that apply.
    12·2 answers
  • An old wheat-grinding wheel in a museum actually works. The sign on the wall says that the wheel has a rotational acceleration o
    14·1 answer
  • What would be an ideal experiment to test how different types of surfaces affect friction?
    11·1 answer
  • A 3.00-kg model airplane has velocity components of 5.00 m/s due east and 8.00 m/s due north. What is the plane’s kinetic energy
    15·2 answers
  • 20.What factor is more important in determining electrical force
    8·1 answer
  • Abstract about cat eye syndrome?
    7·1 answer
  • Would a 2021 Ford Mustang GT be light weight or heavy weight?​
    14·1 answer
  • Which wavelength of the electromagnetic spectrum are shorter than visible light and carry more energy
    13·1 answer
  • A train travels 190km in 3.0 hours and then 120 km in 2.0 hours. What is it’s average speed ?
    7·1 answer
  • A plane glides towards a ground-based radar dish. Radar locates the plane at a distance D = 22 km from the dish, at an angle θ =
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!