Answer:
Distance, d = 778.05 m
Explanation:
Given that,
Force acting on the car, F = 981 N
Mass of the car, m = 1550 kg
Initial speed of the car, v = 25 mi/h = 11.17 m/s
We need to find the distance covered by car if the force continues to be applied to the car. Firstly, lets find the acceleration of the car:

Let d is the distance covered by car. Using second equation of motion as :

So, the car will cover a distance of 778.05 meters.
Answer:
1.034m/s
Explanation:
We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

Substituting,


Part B)
For the Part B we need to apply conserving momentum equation, this formula is given by,

Where here
is the velocity after the collision.



The acceleration rate would be .14667 m/s^2