Answer:
from a lesser hight
Explanation:
because you need less force
hope its right if it is mark brainlyest ;)
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:

The gravitational pull of the Sun the interstellar dust attracting heat away from the protosun the process of nuclear fusion the nebular cloud condensing.
To solve this problem it is necessary to apply the law of Malus which describes the change in the Intensity of Light when it crosses a polarized surface.
Mathematically the expression is given as

Where,
= Initial Intensity
I = Final Intensity after pass through the polarizer
= Angle between the polarizer and the light
Since it is sought to reduce the intensity by half the relationship between the two intensities will be given as

Using the Malus Law we have,





Angle with respect to maximum is 